IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v17y2024i6p1432-d1358098.html
   My bibliography  Save this article

Studying the Improvement of Solar Collector Mechanism with Phase Change Materials

Author

Listed:
  • Maha Rahman Rahi

    (College of Engineering, Samarra University, Samara 443086, Iraq)

  • Saba Ostadi

    (Department of Engineering, University of Exeter, Exeter EX4 4QF, UK)

  • Amin Rahmani

    (Department of Engineering, University of Exeter, Exeter EX4 4QF, UK)

  • Mahdieh Dibaj

    (Department of Engineering, University of Exeter, Exeter EX4 4QF, UK)

  • Mohammad Akrami

    (Department of Engineering, University of Exeter, Exeter EX4 4QF, UK)

Abstract

This study delves into the integration of phase change materials (PCM) in solar thermal collector systems to address this challenge. By incorporating nano encapsulated PCMs, researchers have mitigated concerns surrounding PCM leakage, revolutionizing the potential of solar collector systems to elevate energy efficiency, diminish carbon emissions, and yield manifold benefits. This article comprehensively investigates the design and utilization of solar phase change energy storage devices and examines the transformative impact of employing nano-coated phase change materials (Nano capsules) to augment solar collector performance. The integration of paraffin-based PCM and the insulation of the collector system have been crucial in optimizing heat retention and operational efficacy. The composition of the PCM involves a balanced blend of octadecane phase-change particles and water as the base fluid, designed to maximize thermal performance. Analysis of the experimental findings demonstrates the dynamic thermal behavior of the nano encapsulated phase change material, revealing distinctive temperature profiles about fluid dynamics and absorbent characteristics. Notably, the study emphasizes the nuanced trade-offs associated with the conductivity and melting temperature of the Nano encapsulated PCM, yielding valuable insights into energy storage capacity limitations and thermal performance variations throughout diurnal cycles. Central to the investigation, the optimal nanoparticle proportion is elucidated, shedding light on its pivotal role in modulating PCM performance. Furthermore, findings underscore the complex interplay between nanoparticle volume fraction and thermal fluid temperature, providing critical perspectives on optimizing PCM-enhanced solar collector systems.

Suggested Citation

  • Maha Rahman Rahi & Saba Ostadi & Amin Rahmani & Mahdieh Dibaj & Mohammad Akrami, 2024. "Studying the Improvement of Solar Collector Mechanism with Phase Change Materials," Energies, MDPI, vol. 17(6), pages 1-22, March.
  • Handle: RePEc:gam:jeners:v:17:y:2024:i:6:p:1432-:d:1358098
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/17/6/1432/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/17/6/1432/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Kürklü, Ahmet & Özmerzi, Aziz & Bilgin, Sefai, 2002. "Thermal performance of a water-phase change material solar collector," Renewable Energy, Elsevier, vol. 26(3), pages 391-399.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Malik Adnan Faisal & Amin Rahmani & Mohammad Akrami, 2024. "Numerical Investigation of Solar Collector Performance with Encapsulated PCM: A Transient, 3D Approach," Energies, MDPI, vol. 17(21), pages 1-19, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yang, Haiyue & Wang, Yazhou & Yu, Qianqian & Cao, Guoliang & Yang, Rue & Ke, Jiaona & Di, Xin & Liu, Feng & Zhang, Wenbo & Wang, Chengyu, 2018. "Composite phase change materials with good reversible thermochromic ability in delignified wood substrate for thermal energy storage," Applied Energy, Elsevier, vol. 212(C), pages 455-464.
    2. Dutil, Yvan & Rousse, Daniel R. & Salah, Nizar Ben & Lassue, Stéphane & Zalewski, Laurent, 2011. "A review on phase-change materials: Mathematical modeling and simulations," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(1), pages 112-130, January.
    3. Elfasakhany, Ashraf, 2016. "Performance assessment and productivity of a simple-type solar still integrated with nanocomposite energy storage system," Applied Energy, Elsevier, vol. 183(C), pages 399-407.
    4. Sofiene Mellouli & Talal Alqahtani & Salem Algarni, 2022. "Parametric Analysis of a Solar Water Heater Integrated with PCM for Load Shifting," Energies, MDPI, vol. 15(22), pages 1-16, November.
    5. Feliński, P. & Sekret, R., 2016. "Experimental study of evacuated tube collector/storage system containing paraffin as a PCM," Energy, Elsevier, vol. 114(C), pages 1063-1072.
    6. Waleed Zakri & Sofiene Mellouli & Yahya Fageehi, 2022. "Performance Assessment of Three Latent Heat Storage Designs for a Solar Hot Water Tank," Sustainability, MDPI, vol. 15(1), pages 1-16, December.
    7. Abokersh, Mohamed Hany & El-Morsi, Mohamed & Sharaf, Osama & Abdelrahman, Wael, 2017. "An experimental evaluation of direct flow evacuated tube solar collector integrated with phase change material," Energy, Elsevier, vol. 139(C), pages 1111-1125.
    8. Chunbo Li & Yuwei Dong & Xuelong Fu & Yanzong Wang & Qunyong Zhang, 2022. "Investigating the Effect of Spherical Aluminum Particles on the Photothermal Performance of a Solar Air Collector," Sustainability, MDPI, vol. 14(21), pages 1-13, October.
    9. Mettawee, Eman-Bellah S. & Assassa, Ghazy M.R., 2006. "Experimental study of a compact PCM solar collector," Energy, Elsevier, vol. 31(14), pages 2958-2968.
    10. Seddegh, Saeid & Wang, Xiaolin & Henderson, Alan D. & Xing, Ziwen, 2015. "Solar domestic hot water systems using latent heat energy storage medium: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 49(C), pages 517-533.
    11. Xue, H. Sheng, 2016. "Experimental investigation of a domestic solar water heater with solar collector coupled phase-change energy storage," Renewable Energy, Elsevier, vol. 86(C), pages 257-261.
    12. Dubey, Abhayjeet kumar & Sun, Jingyi & Choudhary, Tushar & Dash, Madhusmita & Rakshit, Dibakar & Ansari, M Zahid & Ramakrishna, Seeram & Liu, Yong & Nanda, Himansu Sekhar, 2023. "Emerging phase change materials with improved thermal efficiency for a clean and sustainable environment: An approach towards net zero," Renewable and Sustainable Energy Reviews, Elsevier, vol. 182(C).
    13. Badiei, Z. & Eslami, M. & Jafarpur, K., 2020. "Performance improvements in solar flat plate collectors by integrating with phase change materials and fins: A CFD modeling," Energy, Elsevier, vol. 192(C).
    14. Kahwaji, Samer & Johnson, Michel B. & Kheirabadi, Ali C. & Groulx, Dominic & White, Mary Anne, 2018. "A comprehensive study of properties of paraffin phase change materials for solar thermal energy storage and thermal management applications," Energy, Elsevier, vol. 162(C), pages 1169-1182.
    15. Li, Chuanchang & Xie, Baoshan & Chen, Deliang & Chen, Jian & Li, Wei & Chen, Zhongsheng & Gibb, Stuart W. & Long, Yi, 2019. "Ultrathin graphite sheets stabilized stearic acid as a composite phase change material for thermal energy storage," Energy, Elsevier, vol. 166(C), pages 246-255.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:17:y:2024:i:6:p:1432-:d:1358098. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.