IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v17y2024i5p1207-d1350409.html
   My bibliography  Save this article

Three-Dimensional Heterogeneity of the Pore and Fracture Development and Acoustic Emission Response Characteristics of Coal Rocks in the Yunnan Laochang Block

Author

Listed:
  • Xingzhi Liu

    (School of Energy Resources, China University of Geosciences, Beijing 100083, China)

  • Songhang Zhang

    (School of Energy Resources, China University of Geosciences, Beijing 100083, China)

  • Yongkang Xie

    (School of Energy Resources, China University of Geosciences, Beijing 100083, China)

  • Tao Wang

    (School of Energy Resources, China University of Geosciences, Beijing 100083, China)

Abstract

Studying the heterogeneity of coal reservoirs is significant to coal bed methane (CBM) exploitation. To investigate the development of the pore–fracture and acoustic emission response characteristics of the coal rock in the Yunnan Laochang block, four cores were extracted from the same coal rock in different directions. Through a comprehensive analysis using CT scanning and three-axis compression tests combined with synchronous acoustic emission experiments, a three-dimensional visualization of the pore–fracture structure and an analysis of the acoustic emission process during the elastic phase were conducted. Additionally, the impact of the heterogeneous development of pore–fractures on the acoustic emission characteristics was discussed. The results show that: there is strong heterogeneity in pore and fracture development within the coal rock, with the most significant development occurring along the direction of vertical stratification; the acoustic emission process in the elastic phase can be divided into three stages: strong–weak–strong; the development of pores and fractures affects the acoustic emission characteristics, with both counts and signal strength increasing as the percentage of voids rises; and the inferred in situ stress aligns with strike-slip faulting stress using acoustic emission. These results can provide a reference for the actual project.

Suggested Citation

  • Xingzhi Liu & Songhang Zhang & Yongkang Xie & Tao Wang, 2024. "Three-Dimensional Heterogeneity of the Pore and Fracture Development and Acoustic Emission Response Characteristics of Coal Rocks in the Yunnan Laochang Block," Energies, MDPI, vol. 17(5), pages 1-19, March.
  • Handle: RePEc:gam:jeners:v:17:y:2024:i:5:p:1207-:d:1350409
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/17/5/1207/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/17/5/1207/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Hui, Gang & Chen, Zhangxin & Wang, Youjing & Zhang, Dongmei & Gu, Fei, 2023. "An integrated machine learning-based approach to identifying controlling factors of unconventional shale productivity," Energy, Elsevier, vol. 266(C).
    2. Chen, Shangbin & Zhu, Yanming & Wang, Hongyan & Liu, Honglin & Wei, Wei & Fang, Junhua, 2011. "Shale gas reservoir characterisation: A typical case in the southern Sichuan Basin of China," Energy, Elsevier, vol. 36(11), pages 6609-6616.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wensong Huang & Ping Wang & Gang Hui & Xiangwen Kong & Yuepeng Jia & Lei Huang & Yufei Bai & Zhiyang Pi & Ye Li & Fuyu Yao & Penghu Bao & Yujie Zhang, 2024. "Unconventional Fracture Networks Simulation and Shale Gas Production Prediction by Integration of Petrophysics, Geomechanics and Fracture Characterization," Energies, MDPI, vol. 17(20), pages 1-16, October.
    2. Gang Hui & Fei Gu & Junqi Gan & Erfan Saber & Li Liu, 2023. "An Integrated Approach to Reservoir Characterization for Evaluating Shale Productivity of Duvernary Shale: Insights from Multiple Linear Regression," Energies, MDPI, vol. 16(4), pages 1-18, February.
    3. Yin, Hong & Zhou, Junping & Xian, Xuefu & Jiang, Yongdong & Lu, Zhaohui & Tan, Jingqiang & Liu, Guojun, 2017. "Experimental study of the effects of sub- and super-critical CO2 saturation on the mechanical characteristics of organic-rich shales," Energy, Elsevier, vol. 132(C), pages 84-95.
    4. Yuxuan Yang & Zhigang Wen & Weichao Tian & Yunpeng Fan & Heting Gao, 2024. "A New Model for Predicting Permeability of Chang 7 Tight Sandstone Based on Fractal Characteristics from High-Pressure Mercury Injection," Energies, MDPI, vol. 17(4), pages 1-16, February.
    5. Xiaoyan Zou & Xianqing Li & Jizhen Zhang & Huantong Li & Man Guo & Pei Zhao, 2021. "Characteristics of Pore Structure and Gas Content of the Lower Paleozoic Shale from the Upper Yangtze Plate, South China," Energies, MDPI, vol. 14(22), pages 1-29, November.
    6. Qin, Chao & Jiang, Yongdong & Zuo, Shuangying & Chen, Shiwan & Xiao, Siyou & Liu, Zhengjie, 2021. "Investigation of adsorption kinetics of CH4 and CO2 on shale exposure to supercritical CO2," Energy, Elsevier, vol. 236(C).
    7. Chen, Junqing & Jiang, Fujie & Cong, Qi & Pang, Xiongqi & Ma, Kuiyou & Shi, Kanyuan & Pang, Bo & Chen, Dongxia & Pang, Hong & Yang, Xiaobin & Wang, Yuying & Li, Bingyao, 2023. "Adsorption characteristics of shale gas in organic–inorganic slit pores," Energy, Elsevier, vol. 278(C).
    8. Zhiyao Zhang & Shang Xu & Qiyang Gou & Qiqi Li, 2022. "Reservoir Characteristics and Resource Potential of Marine Shale in South China: A Review," Energies, MDPI, vol. 15(22), pages 1-21, November.
    9. Yuanyuan Tian & Qing Chen & Changhui Yan & Hongde Chen & Yanqing He & Yufeng He, 2022. "A New Adsorption Equation for Nano-Porous Shale Rocks and Its Application in Pore Size Distribution Analysis," Energies, MDPI, vol. 15(9), pages 1-13, April.
    10. Gou, Qiyang & Xu, Shang & Hao, Fang & Yang, Feng & Shu, Zhiguo & Liu, Rui, 2021. "The effect of tectonic deformation and preservation condition on the shale pore structure using adsorption-based textural quantification and 3D image observation," Energy, Elsevier, vol. 219(C).
    11. Yang, Xu & Zhou, Wenning & Liu, Xunliang & Yan, Yuying, 2020. "A multiscale approach for simulation of shale gas transport in organic nanopores," Energy, Elsevier, vol. 210(C).
    12. Dai, Xuguang & Wei, Chongtao & Wang, Meng & Ma, Ruying & Song, Yu & Zhang, Junjian & Wang, Xiaoqi & Shi, Xuan & Vandeginste, Veerle, 2023. "Interaction mechanism of supercritical CO2 with shales and a new quantitative storage capacity evaluation method," Energy, Elsevier, vol. 264(C).
    13. Wang, Wenyang & Pang, Xiongqi & Chen, Zhangxin & Chen, Dongxia & Zheng, Tianyu & Luo, Bing & Li, Jing & Yu, Rui, 2019. "Quantitative prediction of oil and gas prospects of the Sinian-Lower Paleozoic in the Sichuan Basin in central China," Energy, Elsevier, vol. 174(C), pages 861-872.
    14. Wang, Sha & Jiang, Xiumin & Han, Xiangxin & Tong, Jianhui, 2012. "Investigation of Chinese oil shale resources comprehensive utilization performance," Energy, Elsevier, vol. 42(1), pages 224-232.
    15. Zou, Xiaojing & He, Changyu & Guan, Wei & Zhou, Yan & Zhao, Hongyang & Cai, Mingyu, 2023. "Reservoir tortuosity prediction: Coupling stochastic generation of porous media and machine learning," Energy, Elsevier, vol. 285(C).
    16. Niu, Wente & Lu, Jialiang & Sun, Yuping & Zhang, Xiaowei & Li, Qiaojing & Cao, Xu & Liang, Pingping & Zhan, Hongming, 2024. "Techno-economic integration evaluation in shale gas development based on ensemble learning," Applied Energy, Elsevier, vol. 357(C).
    17. Fargalla, Mandella Ali M. & Yan, Wei & Deng, Jingen & Wu, Tao & Kiyingi, Wyclif & Li, Guangcong & Zhang, Wei, 2024. "TimeNet: Time2Vec attention-based CNN-BiGRU neural network for predicting production in shale and sandstone gas reservoirs," Energy, Elsevier, vol. 290(C).
    18. Bryan X. Medina-Rodriguez & Vladimir Alvarado, 2021. "Use of Gas Adsorption and Inversion Methods for Shale Pore Structure Characterization," Energies, MDPI, vol. 14(10), pages 1-24, May.
    19. Lu, Yiyu & Chen, Xiayu & Tang, Jiren & Li, Honglian & Zhou, Lei & Han, Shuaibin & Ge, Zhaolong & Xia, Binwei & Shen, Huajian & Zhang, Jing, 2019. "Relationship between pore structure and mechanical properties of shale on supercritical carbon dioxide saturation," Energy, Elsevier, vol. 172(C), pages 270-285.
    20. Hui, Gang & Chen, Zhangxin & Wang, Youjing & Zhang, Dongmei & Gu, Fei, 2023. "An integrated machine learning-based approach to identifying controlling factors of unconventional shale productivity," Energy, Elsevier, vol. 266(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:17:y:2024:i:5:p:1207-:d:1350409. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.