IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v17y2024i3p640-d1328609.html
   My bibliography  Save this article

Costs of Coal Abatement for Residential Heating to Reduce Urban Air Pollution in Asian Russia: Evidence from Krasnoyarsk

Author

Listed:
  • Ekaterina A. Syrtsova

    (Laboratory for Economics of Climate Change and Environmental Development, Siberian Federal University, 660041 Krasnoyarsk, Russia)

  • Ekaterina D. Ivantsova

    (Laboratory for Economics of Climate Change and Environmental Development, Siberian Federal University, 660041 Krasnoyarsk, Russia)

  • Alexandra S. Miskiv

    (Laboratory for Economics of Climate Change and Environmental Development, Siberian Federal University, 660041 Krasnoyarsk, Russia)

  • Evgeniya V. Zander

    (Laboratory for Economics of Climate Change and Environmental Development, Siberian Federal University, 660041 Krasnoyarsk, Russia)

  • Anton I. Pyzhev

    (Laboratory for Economics of Climate Change and Environmental Development, Siberian Federal University, 660041 Krasnoyarsk, Russia
    Institute of Economics and Industrial Engineering, Siberian Branch, Russian Academy of Sciences, 630090 Novosibirsk, Russia)

Abstract

Heat and electricity generation are major sources of air pollution in many large cities worldwide. In Siberian cities, the heat supply significantly contributes to air pollution, as coal remains the primary energy fuel in most of Asian Russia. Krasnoyarsk, the second-largest city in the macro-region by population, serves as a clear example of urban air pollution. In recent years, public authorities have implemented several measures to reduce pollutant emissions. These measures include modernizing thermal power stations, replacing inefficient small boiler houses, and converting residential heating to more environmentally friendly types of fuel. However, our analysis shows that these policies have not yet resulted in a significant transition away from using coal for heating. One of the primary reasons is that alternative fuels are unable to compete with coal in terms of price. The proposal suggests transitioning private households to pellet heating. Our goal is to evaluate the potential environmental and economic impacts of this measure. We estimate the necessary subsidy size for the successful implementation of both initiatives. In conclusion, converting households from coal to pellet heating can reduce the emissions of nitrogen oxides, carbon monoxide, sulfur oxides, and suspended particles by 0.2%, 8.5%, 4.4%, and 2.7%, respectively, of the total pollutant emissions in Krasnoyarsk. Furthermore, this conversion can provide economic benefits by supporting local pellet producers who heavily rely on export markets. If practically implemented, the proposed approach could solve one of the most significant development issues of one of the largest Russian cities within a few years, with only 2.5% of the annual city budget expenditure.

Suggested Citation

  • Ekaterina A. Syrtsova & Ekaterina D. Ivantsova & Alexandra S. Miskiv & Evgeniya V. Zander & Anton I. Pyzhev, 2024. "Costs of Coal Abatement for Residential Heating to Reduce Urban Air Pollution in Asian Russia: Evidence from Krasnoyarsk," Energies, MDPI, vol. 17(3), pages 1-15, January.
  • Handle: RePEc:gam:jeners:v:17:y:2024:i:3:p:640-:d:1328609
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/17/3/640/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/17/3/640/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. B. N. Porfiryev, 2019. "Effective Action Strategy to Cope with Climate Change and Its Impact on Russia’s Economy," Studies on Russian Economic Development, Springer, vol. 30(3), pages 235-244, May.
    2. Wang, Kui & Zhang, Yuanyuan & Sekelj, Gasper & Hopke, Philip K., 2019. "Economic analysis of a field monitored residential wood pellet boiler heating system in New York State," Renewable Energy, Elsevier, vol. 133(C), pages 500-511.
    3. Pravin R. Sonarkar & Ashish S. Chaurasia, 2019. "Thermal performance of three improved biomass-fired cookstoves using fuel wood, wood pellets and coconut shell," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 21(3), pages 1429-1449, June.
    4. Vitale, Ignacio & Dondo, Rodolfo G. & González, Matías & Cóccola, Mariana E., 2022. "Modelling and optimization of material flows in the wood pellet supply chain," Applied Energy, Elsevier, vol. 313(C).
    5. Thomson, Harriet & Liddell, Christine, 2015. "The suitability of wood pellet heating for domestic households: A review of literature," Renewable and Sustainable Energy Reviews, Elsevier, vol. 42(C), pages 1362-1369.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kütt, Lauri & Millar, John & Karttunen, Antti & Lehtonen, Matti & Karppinen, Maarit, 2018. "Thermoelectric applications for energy harvesting in domestic applications and micro-production units. Part I: Thermoelectric concepts, domestic boilers and biomass stoves," Renewable and Sustainable Energy Reviews, Elsevier, vol. 98(C), pages 519-544.
    2. Stachowicz, Paweł & Stolarski, Mariusz J., 2024. "Pellets from mixtures of short rotation coppice with forest-derived biomass: Production costs and energy intensity," Renewable Energy, Elsevier, vol. 225(C).
    3. Przemysław Motyl & Danuta Król & Sławomir Poskrobko & Marek Juszczak, 2020. "Numerical Modelling and Experimental Verification of the Low-Emission Biomass Combustion Process in a Domestic Boiler with Flue Gas Flow around the Combustion Chamber," Energies, MDPI, vol. 13(21), pages 1-16, November.
    4. M. Yu. Ksenofontov, 2021. "Methodological and Methodical Assessments of Socioeconomic Climate Change Impacts," Studies on Russian Economic Development, Springer, vol. 32(4), pages 343-350, July.
    5. Sekoai, Patrick T. & Chunilall, Viren & Msele, Kwanele & Buthelezi, Lindiswa & Johakimu, Jonas & Andrew, Jerome & Zungu, Manqoba & Moloantoa, Karabelo & Maningi, Nontuthuko & Habimana, Olivier & Swart, 2023. "Biowaste biorefineries in South Africa: Current status, opportunities, and research and development needs," Renewable and Sustainable Energy Reviews, Elsevier, vol. 188(C).
    6. Timur Kogabayev & Anne Põder & Henrik Barth & Rando Värnik, 2023. "Prospects for Wood Pellet Production in Kazakhstan: A Case Study on Business Model Adjustment," Energies, MDPI, vol. 16(15), pages 1-20, August.
    7. Sergio Paniagua & Alba Prado-Guerra & Ana Isabel Neto & Teresa Nunes & Luís Tarelho & Célia Alves & Luis Fernando Calvo, 2020. "Influence of Varieties and Organic Fertilizer in the Elaboration of a New Poplar-Straw Pellet and Its Emissions in a Domestic Boiler," Energies, MDPI, vol. 13(23), pages 1-17, November.
    8. Liang Zhu & Fangbin Wang & Jing Qi, 2024. "Washing walnut shells with the aqueous part of pyrolysis liquids: effect on biomass and pyrolysis product quality," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 26(11), pages 29169-29187, November.
    9. Zhu, Tong & Curtis, John & Clancy, Matthew, 2023. "Modelling barriers to low-carbon technologies in energy system analysis: The example of renewable heat in Ireland," Applied Energy, Elsevier, vol. 330(PA).
    10. Stolarski, Mariusz Jerzy & Warmiński, Kazimierz & Krzyżaniak, Michał & Olba–Zięty, Ewelina & Stachowicz, Paweł, 2020. "Energy consumption and heating costs for a detached house over a 12-year period – Renewable fuels versus fossil fuels," Energy, Elsevier, vol. 204(C).
    11. Vicente, E.D. & Vicente, A.M. & Evtyugina, M. & Tarelho, L.A.C. & Almeida, S.M. & Alves, C., 2020. "Emissions from residential combustion of certified and uncertified pellets," Renewable Energy, Elsevier, vol. 161(C), pages 1059-1071.
    12. Ferreira, Ana Cristina & Silva, João & Teixeira, Senhorinha & Teixeira, José Carlos & Nebra, Silvia Azucena, 2020. "Assessment of the Stirling engine performance comparing two renewable energy sources: Solar energy and biomass," Renewable Energy, Elsevier, vol. 154(C), pages 581-597.
    13. Mostafa, Mohamed E. & Hu, Song & Wang, Yi & Su, Sheng & Hu, Xun & Elsayed, Saad A. & Xiang, Jun, 2019. "The significance of pelletization operating conditions: An analysis of physical and mechanical characteristics as well as energy consumption of biomass pellets," Renewable and Sustainable Energy Reviews, Elsevier, vol. 105(C), pages 332-348.
    14. Kamal Baharin, Nur Syahirah & Tagami-Kanada, Nami & Cherdkeattikul, Supitchaya & Hara, Hirofumi & Ida, Tamio, 2024. "Effects of repetitive production on the mechanical characteristic and chemical structure of green tea bio-coke," Renewable Energy, Elsevier, vol. 222(C).
    15. Rafi, Muhammed & Naseef, Mohemmad & Prasad, Salu, 2021. "Multidimensional energy poverty and human capital development: Empirical evidence from India," Energy Economics, Elsevier, vol. 101(C).
    16. Shizhong Song & Pei Liu & Jing Xu & Linwei Ma & Chinhao Chong & Min He & Xianzheng Huang & Zheng Li & Weidou Ni, 2016. "An Economic and Policy Analysis of a District Heating System Using Corn Straw Densified Fuel: A Case Study in Nong’an County in Jilin Province, China," Energies, MDPI, vol. 10(1), pages 1-22, December.
    17. Proskurina, Svetlana & Rimppi, Heli & Heinimö, Jussi & Hansson, Julia & Orlov, Anton & Raghu, KC & Vakkilainen, Esa, 2016. "Logistical, economic, environmental and regulatory conditions for future wood pellet transportation by sea to Europe: The case of Northwest Russian seaports," Renewable and Sustainable Energy Reviews, Elsevier, vol. 56(C), pages 38-50.
    18. D. A. Polzikov, 2022. "Imperatives of Adaptation to Climate Changes in the Development of Agricultural Policy in Russia," Studies on Russian Economic Development, Springer, vol. 33(6), pages 680-686, December.
    19. Heiskanen, Eva & Matschoss, Kaisa, 2017. "Understanding the uneven diffusion of building-scale renewable energy systems: A review of household, local and country level factors in diverse European countries," Renewable and Sustainable Energy Reviews, Elsevier, vol. 75(C), pages 580-591.
    20. Andrzej Kuranc & Monika Stoma & Leszek Rydzak & Monika Pilipiuk, 2020. "Durability Assessment of Wooden Pellets in Relation with Vibrations Occurring in a Logistic Process of the Final Product," Energies, MDPI, vol. 13(22), pages 1-15, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:17:y:2024:i:3:p:640-:d:1328609. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.