IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v17y2024i24p6484-d1550702.html
   My bibliography  Save this article

Effect of the Heterogeneity of Coal on Its Seepage Anisotropy: A Micro Conceptual Model

Author

Listed:
  • Xiuling Chen

    (Key Laboratory of Ministry of Education on Safe Mining of Deep Metal Mines, School of Resources and Civil Engineering, Northeastern University, Shenyang 110819, China
    Key Laboratory of Liaoning Province on Deep Engineering and Intelligent Technology, Northeastern University, Shenyang 110819, China)

  • Guanglei Cui

    (Key Laboratory of Ministry of Education on Safe Mining of Deep Metal Mines, School of Resources and Civil Engineering, Northeastern University, Shenyang 110819, China
    Key Laboratory of Liaoning Province on Deep Engineering and Intelligent Technology, Northeastern University, Shenyang 110819, China)

  • Jiaming Luo

    (Key Laboratory of Ministry of Education on Safe Mining of Deep Metal Mines, School of Resources and Civil Engineering, Northeastern University, Shenyang 110819, China
    Key Laboratory of Liaoning Province on Deep Engineering and Intelligent Technology, Northeastern University, Shenyang 110819, China)

  • Chunguang Wang

    (State Key Laboratory of Mining Disaster Prevention and Control Co-Founded by Shandong Province and the Ministry of Science and Technology, Shandong University of Science and Technology, Qingdao 266590, China)

  • Jian Zhang

    (College of Water Conservancy and Civil Engineering, Shandong Agricultural University, No.61 Daizong Street, Taian 271018, China)

Abstract

Coal is a typical dual-porosity structural material. The injection of CO 2 into coal seams has been shown to be an effective method for storing greenhouse gasses and extracting coal bed methane. In light of the theory of dual-porosity media, we investigate the impact of non-homogeneity on seepage anisotropy and examine the influence of CO 2 gas injection on the anisotropy of coal and the permeability of fractures. The results demonstrate that under constant pressure conditions, coal rock has the greatest permeability variation in the direction of face cleats and the smallest changes in the direction of vertical bedding. The more pronounced the heterogeneity, the more evident the change in permeability and the less pronounced the decreasing stage of permeability. Additionally, the larger the diffusion coefficient is, the less pronounced the permeability change. The change in permeability is inversely proportional to the size of the adsorption constant and directly proportional to the size of the fracture. As the matrix block size increases, the permeability also increases, whereas the decrease in permeability becomes less pronounced. The findings of this study offer a theoretical basis for further research into methods for enhancing the CO 2 sequestration rate.

Suggested Citation

  • Xiuling Chen & Guanglei Cui & Jiaming Luo & Chunguang Wang & Jian Zhang, 2024. "Effect of the Heterogeneity of Coal on Its Seepage Anisotropy: A Micro Conceptual Model," Energies, MDPI, vol. 17(24), pages 1-24, December.
  • Handle: RePEc:gam:jeners:v:17:y:2024:i:24:p:6484-:d:1550702
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/17/24/6484/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/17/24/6484/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Joeri Rogelj & Alexander Popp & Katherine V. Calvin & Gunnar Luderer & Johannes Emmerling & David Gernaat & Shinichiro Fujimori & Jessica Strefler & Tomoko Hasegawa & Giacomo Marangoni & Volker Krey &, 2018. "Scenarios towards limiting global mean temperature increase below 1.5 °C," Nature Climate Change, Nature, vol. 8(4), pages 325-332, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chao Wang & Chuyan Shan & Lidong Wang, 2024. "Stranded Asset Impairment Estimates of Thermal Power Companies Under Low-Carbon Transition Scenarios," Sustainability, MDPI, vol. 16(21), pages 1-14, October.
    2. Coppens, Léo & Venmans, Frank, 2025. "The welfare properties of climate targets," Ecological Economics, Elsevier, vol. 228(C).
    3. Kate Dooley & Ellycia Harrould‐Kolieb & Anita Talberg, 2021. "Carbon‐dioxide Removal and Biodiversity: A Threat Identification Framework," Global Policy, London School of Economics and Political Science, vol. 12(S1), pages 34-44, April.
    4. Elke Stehfest & Willem-Jan Zeist & Hugo Valin & Petr Havlik & Alexander Popp & Page Kyle & Andrzej Tabeau & Daniel Mason-D’Croz & Tomoko Hasegawa & Benjamin L. Bodirsky & Katherine Calvin & Jonathan C, 2019. "Key determinants of global land-use projections," Nature Communications, Nature, vol. 10(1), pages 1-10, December.
    5. Chepeliev, Maksym & Diachuk, Oleksandr & Podolets, Roman & Trypolska, Galyna, 2021. "The role of bioenergy in Ukraine's climate mitigation policy by 2050," Renewable and Sustainable Energy Reviews, Elsevier, vol. 152(C).
    6. Ángel Galán-Martín & Daniel Vázquez & Selene Cobo & Niall Dowell & José Antonio Caballero & Gonzalo Guillén-Gosálbez, 2021. "Delaying carbon dioxide removal in the European Union puts climate targets at risk," Nature Communications, Nature, vol. 12(1), pages 1-12, December.
    7. Müller-Hansen, Finn & Lee, Yuan Ting & Callaghan, Max & Jankin, Slava & Minx, Jan C., 2022. "The German coal debate on Twitter: Reactions to a corporate policy process," Energy Policy, Elsevier, vol. 169(C).
    8. Bergholt, Drago & Røisland, Øistein & Sveen, Tommy & Torvik, Ragnar, 2023. "Monetary policy when export revenues drop," Journal of International Money and Finance, Elsevier, vol. 137(C).
    9. Merheb, Caroline, 2024. "Why should imminent international funds for solar photovoltaics go to families and the private sector and not to the government to stop the electricity crisis in Lebanon?," Energy Policy, Elsevier, vol. 192(C).
    10. Yang Ou & Christopher Roney & Jameel Alsalam & Katherine Calvin & Jared Creason & Jae Edmonds & Allen A. Fawcett & Page Kyle & Kanishka Narayan & Patrick O’Rourke & Pralit Patel & Shaun Ragnauth & Ste, 2021. "Deep mitigation of CO2 and non-CO2 greenhouse gases toward 1.5 °C and 2 °C futures," Nature Communications, Nature, vol. 12(1), pages 1-9, December.
    11. Dan Tong & David J. Farnham & Lei Duan & Qiang Zhang & Nathan S. Lewis & Ken Caldeira & Steven J. Davis, 2021. "Geophysical constraints on the reliability of solar and wind power worldwide," Nature Communications, Nature, vol. 12(1), pages 1-12, December.
    12. Fan, Dian & Chen, Shaoqing, 2024. "No pain, no gain? Simulation of carbon reduction potential and socioeconomic effects of voluntary carbon trading in China during 2021–2060," Applied Energy, Elsevier, vol. 375(C).
    13. Panagiotis Fragkos, 2022. "Decarbonizing the International Shipping and Aviation Sectors," Energies, MDPI, vol. 15(24), pages 1-25, December.
    14. Heyen, Daniel & Tavoni, Alessandro, 2024. "Strategic dimensions of solar geoengineering: Economic theory and experiments," Journal of Behavioral and Experimental Economics (formerly The Journal of Socio-Economics), Elsevier, vol. 112(C).
    15. Oluwatoyin J. Gbadeyan & Joseph Muthivhi & Linda Z. Linganiso & Nirmala Deenadayalu, 2024. "Decoupling Economic Growth from Carbon Emissions: A Transition toward Low-Carbon Energy Systems—A Critical Review," Clean Technol., MDPI, vol. 6(3), pages 1-38, August.
    16. Dan Welsby & Baltazar Solano Rodriguez & Pye Steve & Adrien Vogt-Schilb, 2022. "High and Dry: Stranded Natural Gas Reserves and Fiscal Revenues in Latin America and the Caribbean," Working Papers halshs-03410049, HAL.
    17. Fang, Yan Ru & Hossain, MD Shouquat & Peng, Shuan & Han, Ling & Yang, Pingjian, 2024. "Sustainable energy development of crop straw in five southern provinces of China: Bioenergy production, land, and water saving potential," Renewable Energy, Elsevier, vol. 224(C).
    18. Ge, Zekun & Liu, Qian & Wei, Zi, 2024. "Assessment of bank risk exposure considering climate transition risks," Finance Research Letters, Elsevier, vol. 67(PA).
    19. Kreuzer, Christian & Priberny, Christopher, 2022. "To green or not to green: The influence of board characteristics on carbon emissions," Finance Research Letters, Elsevier, vol. 49(C).
    20. Liu, Haifeng & Ampah, Jeffrey Dankwa & Afrane, Sandylove & Adun, Humphrey & Jin, Chao & Yao, Mingfa, 2023. "Deployment of hydrogen in hard-to-abate transport sectors under limited carbon dioxide removal (CDR): Implications on global energy-land-water system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 184(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:17:y:2024:i:24:p:6484-:d:1550702. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.