IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v17y2024i24p6319-d1544198.html
   My bibliography  Save this article

Algae Biofuels Hold Promise in China: Supercritical CO 2 Extraction Technology

Author

Listed:
  • Xiaoying Kuang

    (School of Environment and Chemical Engineering, Foshan University, Foshan 528000, China)

  • Heshan Cai

    (School of Environment and Chemical Engineering, Foshan University, Foshan 528000, China)

  • Liling Mai

    (School of Environment and Chemical Engineering, Foshan University, Foshan 528000, China)

  • Yuxin Xi

    (School of Environment and Chemical Engineering, Foshan University, Foshan 528000, China)

  • Zhaoxi Zhan

    (School of Environment and Chemical Engineering, Foshan University, Foshan 528000, China)

  • Shuwen Han

    (School of Environment and Chemical Engineering, Foshan University, Foshan 528000, China)

  • Ali Gholizadeh

    (College of Economics and Management, Nanjing University of Aeronautics and Astronautics, Nanjing 211106, China)

Abstract

In this study, a systematic review of algae biofuels, including their development and production process, is presented. Compared with traditional techniques, supercritical CO 2 extraction, known for its high efficiency and environmental sustainability, has been widely applied in extracting plant compounds, oils, and fats, demonstrating its role as a promising alternative in biofuel conversion. The principle and features of supercritical CO 2 extraction technology are introduced, and its applications in biofuel production in China are reviewed. The results indicate its broad applicability and substantial scientific value in biofuel production, underscored by its unique extraction mechanisms and operational flexibility and obstacles to its large-scale implementation. Against a future where supercritical CO 2 extraction will play a pivotal role in industrial biofuel production due to the technology’s advancement and policy support in China, this review offers comprehensive insights and references to guide future research into and practices of supercritical CO 2 extraction and biofuel development.

Suggested Citation

  • Xiaoying Kuang & Heshan Cai & Liling Mai & Yuxin Xi & Zhaoxi Zhan & Shuwen Han & Ali Gholizadeh, 2024. "Algae Biofuels Hold Promise in China: Supercritical CO 2 Extraction Technology," Energies, MDPI, vol. 17(24), pages 1-11, December.
  • Handle: RePEc:gam:jeners:v:17:y:2024:i:24:p:6319-:d:1544198
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/17/24/6319/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/17/24/6319/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Shrestha, Anil & Mustafa, Andy Ali & Htike, Myo Myo & You, Vithyea & Kakinaka, Makoto, 2022. "Evolution of energy mix in emerging countries: Modern renewable energy, traditional renewable energy, and non-renewable energy," Renewable Energy, Elsevier, vol. 199(C), pages 419-432.
    2. Ge, Leilei & Wang, Peng & Mou, Haijin, 2011. "Study on saccharification techniques of seaweed wastes for the transformation of ethanol," Renewable Energy, Elsevier, vol. 36(1), pages 84-89.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Song, Yuguang & Xia, Mingchao & Yang, Liu & Chen, Qifang & Su, Su, 2023. "Multi-granularity source-load-storage cooperative dispatch based on combined robust optimization and stochastic optimization for a highway service area micro-energy grid," Renewable Energy, Elsevier, vol. 205(C), pages 747-762.
    2. Assareh, Ehsanolah & Mousavi Asl, Seyed Sajad & Agarwal, Neha & Ahmadinejad, Mehrdad & Ghodrat, Maryam & Lee, Moonyong, 2023. "New optimized configuration for a hybrid PVT solar/electrolyzer/absorption chiller system utilizing the response surface method as a machine learning technique and multi-objective optimization," Energy, Elsevier, vol. 281(C).
    3. Borines, M.G. & de Leon, R.L. & McHenry, M.P., 2011. "Bioethanol production from farming non-food macroalgae in Pacific island nations: Chemical constituents, bioethanol yields, and prospective species in the Philippines," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(9), pages 4432-4435.
    4. Zuo, Yinhui & Sun, Yigao & Zhang, Luquan & Zhang, Chao & Wang, Yingchun & Jiang, Guangzheng & Wang, Xiaoguang & Zhang, Tao & Cui, Longqing, 2024. "Geothermal resource evaluation in the Sichuan Basin and suggestions for the development and utilization of abandoned oil and gas wells," Renewable Energy, Elsevier, vol. 225(C).
    5. Jain, Sanyam & Kumar, Shushil, 2024. "A comprehensive review of bioethanol production from diverse feedstocks: Current advancements and economic perspectives," Energy, Elsevier, vol. 296(C).
    6. Wang, Shanyong & Ma, Ling, 2024. "Fiscal decentralisation and renewable energy development: Inhibition or promotion?," Energy, Elsevier, vol. 311(C).
    7. Ben Atitallah, Imen & Ntaikou, Ioanna & Antonopoulou, Georgia & Alexandropoulou, Maria & Brysch-Herzberg, Michael & Nasri, Moncef & Lyberatos, Gerasimos & Mechichi, Tahar, 2020. "Evaluation of the non-conventional yeast strain Wickerhamomyces anomalus (Pichia anomala) X19 for enhanced bioethanol production using date palm sap as renewable feedstock," Renewable Energy, Elsevier, vol. 154(C), pages 71-81.
    8. Hong Pan & Jie Yang & Yang Yu & Yuan Zheng & Xiaonan Zheng & Chenyang Hang, 2024. "Intelligent Low-Consumption Optimization Strategies: Economic Operation of Hydropower Stations Based on Improved LSTM and Random Forest Machine Learning Algorithm," Mathematics, MDPI, vol. 12(9), pages 1-20, April.
    9. Suhaib A. Bandh & Fayaz A. Malla & Irteza Qayoom & Haika Mohi-Ud-Din & Aqsa Khursheed Butt & Aashia Altaf & Shahid A. Wani & Richard Betts & Thanh Hai Truong & Nguyen Dang Khoa Pham & Dao Nam Cao & Sh, 2023. "Importance of Blue Carbon in Mitigating Climate Change and Plastic/Microplastic Pollution and Promoting Circular Economy," Sustainability, MDPI, vol. 15(3), pages 1-29, February.
    10. Bu, Fan & wu, Hong & Mahmoud, Haitham A. & Alzoubi, Haitham M. & Ramazanovna, Nargiza Kuzieva & Gao, Yirui, 2023. "Do financial inclusion, natural resources and urbanization affect the sustainable environment in emerging economies," Resources Policy, Elsevier, vol. 87(PA).
    11. Yang, Peizhou & Guo, Liqiong & Cheng, Shujie & Lou, Nannan & Lin, Junfang, 2011. "Recombinant multi-functional cellulase activity in submerged fermentation of lignocellulosic wastes," Renewable Energy, Elsevier, vol. 36(12), pages 3268-3272.
    12. Paz-Cedeno, Fernando Roberto & Henares, Lucas Ragnini & Solorzano-Chavez, Eddyn Gabriel & Scontri, Mateus & Picheli, Flávio Pereira & Miranda Roldán, Ismael Ulises & Monti, Rubens & Conceição de Olive, 2021. "Evaluation of the effects of different chemical pretreatments in sugarcane bagasse on the response of enzymatic hydrolysis in batch systems subject to high mass loads," Renewable Energy, Elsevier, vol. 165(P1), pages 1-13.
    13. Marek Guzek & Jerzy Jackowski & Rafał S. Jurecki & Emilia M. Szumska & Piotr Zdanowicz & Marcin Żmuda, 2024. "Electric Vehicles—An Overview of Current Issues—Part 1—Environmental Impact, Source of Energy, Recycling, and Second Life of Battery," Energies, MDPI, vol. 17(1), pages 1-25, January.
    14. Liu, J. Jay & Dickson, Rofice & Niaz, Haider & Van Hal, Jaap W. & Dijkstra, J.W. & Fasahati, Peyman, 2022. "Production of fuels and chemicals from macroalgal biomass: Current status, potentials, challenges, and prospects," Renewable and Sustainable Energy Reviews, Elsevier, vol. 169(C).
    15. Xie, Haonan & Ahmad, Tanveer & Zhang, Dongdong & Goh, Hui Hwang & Wu, Thomas, 2024. "Community-based virtual power plants’ technology and circular economy models in the energy sector: A Techno-economy study," Renewable and Sustainable Energy Reviews, Elsevier, vol. 192(C).
    16. Kouhgardi, Esmaeil & Zendehboudi, Sohrab & Mohammadzadeh, Omid & Lohi, Ali & Chatzis, Ioannis, 2023. "Current status and future prospects of biofuel production from brown algae in North America: Progress and challenges," Renewable and Sustainable Energy Reviews, Elsevier, vol. 172(C).
    17. Sudhakar, M.P. & Jegatheesan, A. & Poonam, C. & Perumal, K. & Arunkumar, K., 2017. "Biosaccharification and ethanol production from spent seaweed biomass using marine bacteria and yeast," Renewable Energy, Elsevier, vol. 105(C), pages 133-139.
    18. Trivedi, Jatin & Chakraborty, Dipanwita & Nobanee, Haitham, 2023. "Modelling the growth dynamics of sustainable renewable energy – Flourishing green financing," Energy Policy, Elsevier, vol. 183(C).
    19. Yue Li & Muhammad Tayyab Sohail & Yanan Zhang & Sana Ullah, 2024. "Bioenergy for Sustainable Rural Development: Elevating Government Governance with Environmental Policy in China," Land, MDPI, vol. 13(12), pages 1-18, December.
    20. Silvestri, Luca & De Santis, Michele, 2024. "Renewable-based load shifting system for demand response to enhance energy-economic-environmental performance of industrial enterprises," Applied Energy, Elsevier, vol. 358(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:17:y:2024:i:24:p:6319-:d:1544198. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.