IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v17y2024i23p6042-d1534404.html
   My bibliography  Save this article

Impact of Penalty Structures on Virtual Power Plants in a Day-Ahead Electricity Market

Author

Listed:
  • Youngkook Song

    (Department of Electrical and Computer Engineering, Seoul National University, Seoul 08826, Republic of Korea)

  • Myeongju Chae

    (Department of Electrical and Computer Engineering, Seoul National University, Seoul 08826, Republic of Korea)

  • Yeonouk Chu

    (Department of Electrical and Computer Engineering, Seoul National University, Seoul 08826, Republic of Korea)

  • Yongtae Yoon

    (Department of Electrical and Computer Engineering, Seoul National University, Seoul 08826, Republic of Korea)

  • Younggyu Jin

    (Power System Economics Laboratory, Department of Electrical Engineering, Jeju National University, Jeju 62343, Republic of Korea)

Abstract

The rapid increase in distributed energy resources has augmented the significance of virtual power plants (VPPs), which are essential for the aggregation and management of variable renewable energy resources (RERs). The inherent variability and uncertainty of RERs necessitate the implementation of deviation penalties to address the discrepancies between the awarded bids and actual generation, which is crucial in maintaining market stability and ensuring reliable grid operations. Therefore, this study proposes a framework for deviation penalty structures, categorizing penalties based on three factors: the penalty scope, penalty rate, and penalty coefficient. The simulation results show that the penalty scope significantly influences the revenue of VPPs, with over-generation penalty structures typically yielding higher profitability. Conversely, dual-sided penalty structures result in lower total revenues compared to one-sided penalty structures. For instance, when the penalty price coefficient is set to 0.1, the total revenue of a dual-sided penalty structure is approximately 62.26% lower than that of a one-sided penalty structure during the morning period. The results also demonstrate that deviation penalty structures have a direct impact on power deviations and curtailment behavior. Finally, we offer recommendations for the design of an effective penalty structure aimed at assisting policymakers and distributed system operators (DSOs) in structuring market mechanisms, which not only facilitate the integration of RERs but also enhance their economic viability within electricity markets.

Suggested Citation

  • Youngkook Song & Myeongju Chae & Yeonouk Chu & Yongtae Yoon & Younggyu Jin, 2024. "Impact of Penalty Structures on Virtual Power Plants in a Day-Ahead Electricity Market," Energies, MDPI, vol. 17(23), pages 1-23, December.
  • Handle: RePEc:gam:jeners:v:17:y:2024:i:23:p:6042-:d:1534404
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/17/23/6042/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/17/23/6042/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Jia, Dongqing & Li, Xingmei & Gong, Xu & Lv, Xiaoyan & Shen, Zhong, 2024. "Bi-level strategic bidding model of novel virtual power plant aggregating waste gasification in integrated electricity and hydrogen markets," Applied Energy, Elsevier, vol. 357(C).
    2. Tang, Qinghu & Guo, Hongye & Zheng, Kedi & Chen, Qixin, 2024. "Forecasting individual bids in real electricity markets through machine learning framework," Applied Energy, Elsevier, vol. 363(C).
    3. Fusco, Andrea & Gioffrè, Domenico & Francesco Castelli, Alessandro & Bovo, Cristian & Martelli, Emanuele, 2023. "A multi-stage stochastic programming model for the unit commitment of conventional and virtual power plants bidding in the day-ahead and ancillary services markets," Applied Energy, Elsevier, vol. 336(C).
    4. Zhang, Tianhan & Qiu, Weiqiang & Zhang, Zhi & Lin, Zhenzhi & Ding, Yi & Wang, Yiting & Wang, Lianfang & Yang, Li, 2023. "Optimal bidding strategy and profit allocation method for shared energy storage-assisted VPP in joint energy and regulation markets," Applied Energy, Elsevier, vol. 329(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jiang, Yuzheng & Dong, Jun & Huang, Hexiang, 2024. "Optimal bidding strategy for the price-maker virtual power plant in the day-ahead market based on multi-agent twin delayed deep deterministic policy gradient algorithm," Energy, Elsevier, vol. 306(C).
    2. Ju, Liwei & Lv, ShuoShuo & Zhang, Zheyu & Li, Gen & Gan, Wei & Fang, Jiangpeng, 2024. "Data-driven two-stage robust optimization dispatching model and benefit allocation strategy for a novel virtual power plant considering carbon-green certificate equivalence conversion mechanism," Applied Energy, Elsevier, vol. 362(C).
    3. Mei, Shufan & Tan, Qinliang & Liu, Yuan & Trivedi, Anupam & Srinivasan, Dipti, 2023. "Optimal bidding strategy for virtual power plant participating in combined electricity and ancillary services market considering dynamic demand response price and integrated consumption satisfaction," Energy, Elsevier, vol. 284(C).
    4. Yang, Shenbo & Fang, Jiangpeng & Zhang, Zheyu & Lv, ShuoShuo & Lin, Hongyu & Ju, Liwei, 2024. "Two-stage coordinated optimal dispatching model and benefit allocation strategy for rural new energy microgrid," Energy, Elsevier, vol. 292(C).
    5. Wang, Dongxue & Fan, Ruguo & Yang, Peiwen & Du, Kang & Xu, Xiaoxia & Chen, Rongkai, 2024. "Research on floating real-time pricing strategy for microgrid operator in local energy market considering shared energy storage leasing," Applied Energy, Elsevier, vol. 368(C).
    6. Alain Aoun & Mehdi Adda & Adrian Ilinca & Mazen Ghandour & Hussein Ibrahim, 2024. "Optimizing Virtual Power Plant Management: A Novel MILP Algorithm to Minimize Levelized Cost of Energy, Technical Losses, and Greenhouse Gas Emissions," Energies, MDPI, vol. 17(16), pages 1-23, August.
    7. Cui, Jingshi & Wu, Jiaman & Wu, Chenye & Moura, Scott, 2023. "Electric vehicles embedded virtual power plants dispatch mechanism design considering charging efficiencies," Applied Energy, Elsevier, vol. 352(C).
    8. Tang, Qinghu & Guo, Hongye & Zheng, Kedi & Chen, Qixin, 2024. "Forecasting individual bids in real electricity markets through machine learning framework," Applied Energy, Elsevier, vol. 363(C).
    9. Hou, Langbo & Tong, Xi & Chen, Heng & Fan, Lanxin & Liu, Tao & Liu, Wenyi & Liu, Tong, 2024. "Optimized scheduling of smart community energy systems considering demand response and shared energy storage," Energy, Elsevier, vol. 295(C).
    10. Luwen Pan & Jiajia Chen, 2024. "Optimal Energy Storage Configuration of Prosumers with Uncertain Photovoltaic in the Presence of Customized Pricing-Based Demand Response," Sustainability, MDPI, vol. 16(6), pages 1-18, March.
    11. Li, Jinchao & Sun, Zihao & Niu, Xiaoxuan & Li, Shiwei, 2024. "Economic optimization scheduling of virtual power plants considering an incentive based tiered carbon price," Energy, Elsevier, vol. 305(C).
    12. Silva-Rodriguez, Lina & Sanjab, Anibal & Fumagalli, Elena & Gibescu, Madeleine, 2024. "Light robust co-optimization of energy and reserves in the day-ahead electricity market," Applied Energy, Elsevier, vol. 353(PA).
    13. La Fata, Alice & Brignone, Massimo & Procopio, Renato & Bracco, Stefano & Delfino, Federico & Barbero, Giulia & Barilli, Riccardo, 2024. "An energy management system to schedule the optimal participation to electricity markets and a statistical analysis of the bidding strategies over long time horizons," Renewable Energy, Elsevier, vol. 228(C).
    14. Siddique, Muhammad Bilal & Keles, Dogan & Scheller, Fabian & Nielsen, Per Sieverts, 2024. "Dispatch strategies for large-scale heat pump based district heating under high renewable share and risk-aversion: A multistage stochastic optimization approach," Energy Economics, Elsevier, vol. 136(C).
    15. Dong, Jizhe & Li, Yuanhan & Zuo, Shi & Wu, Xiaomei & Zhang, Zuyao & Du, Jiang, 2023. "An intraperiod arbitrary ramping-rate changing model in unit commitment," Energy, Elsevier, vol. 284(C).
    16. Lu, Xin & Qiu, Jing & Zhang, Cuo & Lei, Gang & Zhu, Jianguo, 2024. "Seizing unconventional arbitrage opportunities in virtual power plants: A profitable and flexible recruitment approach," Applied Energy, Elsevier, vol. 358(C).
    17. Dong, Min & Su, Juan & Zhao, Jing & Dong, Yanjun & Du, Songhuai, 2024. "Fraudulent balancing operation strategy for multi-agent P2P electricity trading considering neighborhood scene public energy storage," Applied Energy, Elsevier, vol. 375(C).
    18. Ebrahimi, Mahoor & Ebrahimi, Mahan & Shafie-khah, Miadreza & Laaksonen, Hannu, 2024. "EV-observing distribution system management considering strategic VPPs and active & reactive power markets," Applied Energy, Elsevier, vol. 364(C).
    19. Jia, Dongqing & Li, Xingmei & Gong, Xu & Lv, Xiaoyan & Shen, Zhong, 2024. "Bi-level strategic bidding model of novel virtual power plant aggregating waste gasification in integrated electricity and hydrogen markets," Applied Energy, Elsevier, vol. 357(C).
    20. Rashmita Saran & Bharath Supra & G. P. Girish & Sweta Singh, 2024. "Has Real Time Spot Electricity Market in India Impacted Day-Ahead Spot Electricity Market?," International Journal of Energy Economics and Policy, Econjournals, vol. 14(5), pages 347-355, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:17:y:2024:i:23:p:6042-:d:1534404. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.