IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v17y2024i23p6019-d1533057.html
   My bibliography  Save this article

Application of Back-to-Back Hybrid Filter to a Hot Strip Mill with Cycloconverters

Author

Listed:
  • Rafael Cabral Knaip Krause

    (Department of Electrical Engineering, Federal University of Espírito Santo (UFES), Av. Fernando Ferrari 514, Vitória 29075-910, ES, Brazil
    These authors contributed equally to this work.)

  • Hélio Marcos André Antunes

    (Department of Electrical Engineering, Federal University of Espírito Santo (UFES), Av. Fernando Ferrari 514, Vitória 29075-910, ES, Brazil
    These authors contributed equally to this work.)

Abstract

In steel mills that employ the hot strip mill process, cycloconverters with nominal power ratings in the megawatt range are commonly used to drive synchronous motors. However, these cycloconverters draw highly distorted currents from the power grid, causing significant voltage distortion at the point of common coupling (PCC) and leading to numerous power quality (PQ) issues. Multi-stage passive filters are widely used to mitigate harmonics in this context. However, this approach can lead to harmonic resonance, exacerbating distortion and overloading the passive filtering system. This study presents a novel integration of a back-to-back hybrid filter, designed specifically for hot strip mills with cycloconverters at a steel mill located in the Metropolitan Area of Vitória, ES, Brazil. The proposed method combines active and passive filtering, where the active filter works in tandem with existing passive elements to compensate for harmonic components while damping resonances across a broad frequency range. Simulations are conducted to evaluate the hybrid filter’s efficacy in harmonic compensation and resonance damping, particularly during load expansion scenarios for the hot strip mill. Results indicate that the back-to-back hybrid filter significantly improves PQ by reducing harmonic overloads on pre-existing passive filter branches, thereby enhancing the reliability of the entire power system. This improvement is achieved with active filters of relatively low-rated capacity compared to the hot strip mill load, making it a cost-effective and scalable solution.

Suggested Citation

  • Rafael Cabral Knaip Krause & Hélio Marcos André Antunes, 2024. "Application of Back-to-Back Hybrid Filter to a Hot Strip Mill with Cycloconverters," Energies, MDPI, vol. 17(23), pages 1-24, November.
  • Handle: RePEc:gam:jeners:v:17:y:2024:i:23:p:6019-:d:1533057
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/17/23/6019/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/17/23/6019/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Byungju Park & Jaehyeong Lee & Hangkyu Yoo & Gilsoo Jang, 2021. "Harmonic Mitigation Using Passive Harmonic Filters: Case Study in a Steel Mill Power System," Energies, MDPI, vol. 14(8), pages 1-16, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chamberlin Stéphane Azebaze Mboving & Zbigniew Hanzelka & Andrzej Firlit, 2022. "Analysis of the Factors Having an Influence on the LC Passive Harmonic Filter Work Efficiency," Energies, MDPI, vol. 15(5), pages 1-51, March.
    2. Andrej Brandis & Denis Pelin & Zvonimir Klaić & Damir Šljivac, 2022. "Identification of Even-Order Harmonics Injected by Semiconverter into the AC Grid," Energies, MDPI, vol. 15(5), pages 1-18, February.
    3. Corina Maria Diniș & Gabriel Nicolae Popa & Corina Daniela Cunțan & Angela Iagăr, 2024. "Aspects Regarding of Passive Filters Sustainability for Non-Linear Single-Phase Consumers," Sustainability, MDPI, vol. 16(7), pages 1-37, March.
    4. Maria R. L. Oliveira & Luccas T. F. Soares & Aurélio L. M. Coelho, 2024. "Back-to-Back Inverter for Induction Machine Drive with Harmonic Current Compensation and Reactive Power Tolerance to Voltage Sags," Energies, MDPI, vol. 17(16), pages 1-26, August.
    5. Tomasz Popławski & Marek Kurkowski, 2023. "Nonlinear Loads in Lighting Installations—Problems and Threats," Energies, MDPI, vol. 16(16), pages 1-15, August.
    6. Gabriel Nicolae Popa, 2022. "Electric Power Quality through Analysis and Experiment," Energies, MDPI, vol. 15(21), pages 1-14, October.
    7. Miloud Rezkallah & Hussein Ibrahim & Félix Dubuisson & Ambrish Chandra & Sanjeev Singh & Bhim Singh & Mohamad Issa, 2021. "Hardware Implementation of Composite Control Strategy for Wind-PV-Battery Hybrid Off-Grid Power Generation System," Clean Technol., MDPI, vol. 3(4), pages 1-23, November.
    8. Łukasz Michalec & Michał Jasiński & Tomasz Sikorski & Zbigniew Leonowicz & Łukasz Jasiński & Vishnu Suresh, 2021. "Impact of Harmonic Currents of Nonlinear Loads on Power Quality of a Low Voltage Network–Review and Case Study," Energies, MDPI, vol. 14(12), pages 1-19, June.
    9. Yerbol Yerbayev & Ivan Artyukhov & Artem Zemtsov & Denis Artyukhov & Svetlana Molot & Dinara Japarova & Viktor Zakharov, 2022. "Negative Impact Mitigation on the Power Supply System of a Fans Group with Frequency-Variable Drive," Energies, MDPI, vol. 15(23), pages 1-21, November.
    10. Dawid Buła & Dariusz Grabowski & Marcin Maciążek, 2022. "A Review on Optimization of Active Power Filter Placement and Sizing Methods," Energies, MDPI, vol. 15(3), pages 1-35, February.
    11. Minh Ly Duc & Lukas Hlavaty & Petr Bilik & Radek Martinek, 2023. "Harmonic Mitigation Using Meta-Heuristic Optimization for Shunt Adaptive Power Filters: A Review," Energies, MDPI, vol. 16(10), pages 1-55, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:17:y:2024:i:23:p:6019-:d:1533057. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.