IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v17y2024i16p4110-d1458875.html
   My bibliography  Save this article

Back-to-Back Inverter for Induction Machine Drive with Harmonic Current Compensation and Reactive Power Tolerance to Voltage Sags

Author

Listed:
  • Maria R. L. Oliveira

    (Instituto de Ciências Tecnológicas—ICT, Universidade Federal de Itajubá—UNIFEI, Itabira 35903-087, Brazil)

  • Luccas T. F. Soares

    (Instituto de Ciências Tecnológicas—ICT, Universidade Federal de Itajubá—UNIFEI, Itabira 35903-087, Brazil)

  • Aurélio L. M. Coelho

    (Instituto de Ciências Tecnológicas—ICT, Universidade Federal de Itajubá—UNIFEI, Itabira 35903-087, Brazil)

Abstract

The widespread use of static converters for controlling electrical machines and the concern for electrical power quality in industrial environments provide an opportunity for utilizing these devices to enhance the power quality. In this context, this work presents a back-to-back converter model for driving induction machines. The converter is designed to correct the power factor of the point common coupling (PCC), compensate for harmonic currents (acting as an active filter), and withstand voltage sags. The necessary control system models were developed, and an alternative implementation for these functions in the converter was proposed. The results demonstrate the technical feasibility of this solution, as the converter operated within its nominal limits by compensating for harmonics and reactive power. Moreover, the equipment showed resilience to severe voltage sags. The contribution of this paper focuses on the multifunctionality of the frequency converter for driving induction machines. It emphasizes the advantage of the inverter in improving power quality in industrial environments through reactive power compensation and harmonic current compensation, thus functioning as an active power filter. Additionally, it is worth highlighting its ability to handle voltage dips. In this regard, this paper contributes by providing an operational strategy for driving the induction machine during such transients.

Suggested Citation

  • Maria R. L. Oliveira & Luccas T. F. Soares & Aurélio L. M. Coelho, 2024. "Back-to-Back Inverter for Induction Machine Drive with Harmonic Current Compensation and Reactive Power Tolerance to Voltage Sags," Energies, MDPI, vol. 17(16), pages 1-26, August.
  • Handle: RePEc:gam:jeners:v:17:y:2024:i:16:p:4110-:d:1458875
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/17/16/4110/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/17/16/4110/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Byungju Park & Jaehyeong Lee & Hangkyu Yoo & Gilsoo Jang, 2021. "Harmonic Mitigation Using Passive Harmonic Filters: Case Study in a Steel Mill Power System," Energies, MDPI, vol. 14(8), pages 1-16, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chamberlin Stéphane Azebaze Mboving & Zbigniew Hanzelka & Andrzej Firlit, 2022. "Analysis of the Factors Having an Influence on the LC Passive Harmonic Filter Work Efficiency," Energies, MDPI, vol. 15(5), pages 1-51, March.
    2. Andrej Brandis & Denis Pelin & Zvonimir Klaić & Damir Šljivac, 2022. "Identification of Even-Order Harmonics Injected by Semiconverter into the AC Grid," Energies, MDPI, vol. 15(5), pages 1-18, February.
    3. Corina Maria Diniș & Gabriel Nicolae Popa & Corina Daniela Cunțan & Angela Iagăr, 2024. "Aspects Regarding of Passive Filters Sustainability for Non-Linear Single-Phase Consumers," Sustainability, MDPI, vol. 16(7), pages 1-37, March.
    4. Tomasz Popławski & Marek Kurkowski, 2023. "Nonlinear Loads in Lighting Installations—Problems and Threats," Energies, MDPI, vol. 16(16), pages 1-15, August.
    5. Gabriel Nicolae Popa, 2022. "Electric Power Quality through Analysis and Experiment," Energies, MDPI, vol. 15(21), pages 1-14, October.
    6. Miloud Rezkallah & Hussein Ibrahim & Félix Dubuisson & Ambrish Chandra & Sanjeev Singh & Bhim Singh & Mohamad Issa, 2021. "Hardware Implementation of Composite Control Strategy for Wind-PV-Battery Hybrid Off-Grid Power Generation System," Clean Technol., MDPI, vol. 3(4), pages 1-23, November.
    7. Łukasz Michalec & Michał Jasiński & Tomasz Sikorski & Zbigniew Leonowicz & Łukasz Jasiński & Vishnu Suresh, 2021. "Impact of Harmonic Currents of Nonlinear Loads on Power Quality of a Low Voltage Network–Review and Case Study," Energies, MDPI, vol. 14(12), pages 1-19, June.
    8. Yerbol Yerbayev & Ivan Artyukhov & Artem Zemtsov & Denis Artyukhov & Svetlana Molot & Dinara Japarova & Viktor Zakharov, 2022. "Negative Impact Mitigation on the Power Supply System of a Fans Group with Frequency-Variable Drive," Energies, MDPI, vol. 15(23), pages 1-21, November.
    9. Dawid Buła & Dariusz Grabowski & Marcin Maciążek, 2022. "A Review on Optimization of Active Power Filter Placement and Sizing Methods," Energies, MDPI, vol. 15(3), pages 1-35, February.
    10. Minh Ly Duc & Lukas Hlavaty & Petr Bilik & Radek Martinek, 2023. "Harmonic Mitigation Using Meta-Heuristic Optimization for Shunt Adaptive Power Filters: A Review," Energies, MDPI, vol. 16(10), pages 1-55, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:17:y:2024:i:16:p:4110-:d:1458875. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.