IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v17y2024i23p5966-d1530928.html
   My bibliography  Save this article

Techno-Economic Analysis of Territorial Case Studies for the Integration of Biorefineries and Green Hydrogen

Author

Listed:
  • Aristide Giuliano

    (ENEA, Italian National Agency for New Technologies, Energy and Sustainable Economic Development, S.S. 106 Ionica, km 419+500, 75026 Rotondella, MT, Italy)

  • Heinz Stichnothe

    (Thünen Institute of Forestry, Leuschnerstrasse 91, 21031 Hamburg, Germany)

  • Nicola Pierro

    (ENEA, Italian National Agency for New Technologies, Energy and Sustainable Economic Development, S.S. 106 Ionica, km 419+500, 75026 Rotondella, MT, Italy)

  • Isabella De Bari

    (ENEA, Italian National Agency for New Technologies, Energy and Sustainable Economic Development, S.S. 106 Ionica, km 419+500, 75026 Rotondella, MT, Italy)

Abstract

To achieve sustainable development, the transition from a fossil-based economy to a circular economy is essential. The use of renewable energy sources to make the overall carbon foot print more favorable is an important pre-requisite. In this context, it is crucial to valorize all renewable resources through an optimized local integration. One opportunity arises through the synergy between bioresources and green hydrogen. Through techno-economic assessments, this work analyzes four local case studies that integrate bio-based processes with green hydrogen produced via electrolysis using renewable energy sources. An analysis of the use of webGIS tools (i.e., Atlas of Biorefineries of IEA Bioenergy) to identify existing biorefineries that require hydrogen in relation to territories with a potential availability of green hydrogen, has never been conducted before. This paper provides an evaluation of the production costs of the target products as a function of the local green hydrogen supply costs. The results revealed that the impact of green hydrogen costs could vary widely, ranging from 1% to 95% of the total production costs, depending on the bio-based target product evaluated. Additionally, hydrogen demand in the target area could require an installed variable renewable energy capacity of 20 MW and 500 MW. On the whole, the local integration of biorefineries and green hydrogen could represent an optimal opportunity to make hydrogenated bio-based products 100% renewable.

Suggested Citation

  • Aristide Giuliano & Heinz Stichnothe & Nicola Pierro & Isabella De Bari, 2024. "Techno-Economic Analysis of Territorial Case Studies for the Integration of Biorefineries and Green Hydrogen," Energies, MDPI, vol. 17(23), pages 1-19, November.
  • Handle: RePEc:gam:jeners:v:17:y:2024:i:23:p:5966-:d:1530928
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/17/23/5966/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/17/23/5966/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Hansen, Samuel & Mirkouei, Amin & Diaz, Luis A., 2020. "A comprehensive state-of-technology review for upgrading bio-oil to renewable or blended hydrocarbon fuels," Renewable and Sustainable Energy Reviews, Elsevier, vol. 118(C).
    2. Siyu Zhang & Ning Zhang & Hongcai Dai & Lin Liu & Zhuan Zhou & Qing Shi & Jing Lu, 2023. "Comparison of Different Coupling Modes between the Power System and the Hydrogen System Based on a Power–Hydrogen Coordinated Planning Optimization Model," Energies, MDPI, vol. 16(14), pages 1-18, July.
    3. Reuß, M. & Grube, T. & Robinius, M. & Preuster, P. & Wasserscheid, P. & Stolten, D., 2017. "Seasonal storage and alternative carriers: A flexible hydrogen supply chain model," Applied Energy, Elsevier, vol. 200(C), pages 290-302.
    4. Zhu, Mengshu & Ai, Xiaomeng & Fang, Jiakun & Cui, Shichang & Wu, Kejing & Zheng, Lufan & Wen, Jinyu, 2024. "Optimal scheduling of hydrogen energy hub for stable demand with uncertain photovoltaic and biomass," Applied Energy, Elsevier, vol. 360(C).
    5. Giulio Raimondi & Gianluca Greco & Michele Ongis & Gabriele D’Antuono & Davide Lanni & Giuseppe Spazzafumo, 2024. "Techno-Economical Assessment for Combined Production of Hydrogen, Heat, and Power from Residual Lignocellulosic Agricultural Biomass in Huesca Province (Spain)," Energies, MDPI, vol. 17(4), pages 1-24, February.
    6. Inês Rolo & Vítor A. F. Costa & Francisco P. Brito, 2023. "Hydrogen-Based Energy Systems: Current Technology Development Status, Opportunities and Challenges," Energies, MDPI, vol. 17(1), pages 1-74, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Li, Yanfei & Taghizadeh-Hesary, Farhad, 2022. "The economic feasibility of green hydrogen and fuel cell electric vehicles for road transport in China," Energy Policy, Elsevier, vol. 160(C).
    2. Kolb, Sebastian & Plankenbühler, Thomas & Frank, Jonas & Dettelbacher, Johannes & Ludwig, Ralf & Karl, Jürgen & Dillig, Marius, 2021. "Scenarios for the integration of renewable gases into the German natural gas market – A simulation-based optimisation approach," Renewable and Sustainable Energy Reviews, Elsevier, vol. 139(C).
    3. Jiwon Yu & Young Jae Han & Hyewon Yang & Sugil Lee & Gildong Kim & Chulung Lee, 2022. "Promising Technology Analysis and Patent Roadmap Development in the Hydrogen Supply Chain," Sustainability, MDPI, vol. 14(21), pages 1-20, October.
    4. Abdulrahman Joubi & Yutaro Akimoto & Keiichi Okajima, 2022. "A Production and Delivery Model of Hydrogen from Solar Thermal Energy in the United Arab Emirates," Energies, MDPI, vol. 15(11), pages 1-14, May.
    5. Liu, Hailiang & Brown, Tom & Andresen, Gorm Bruun & Schlachtberger, David P. & Greiner, Martin, 2019. "The role of hydro power, storage and transmission in the decarbonization of the Chinese power system," Applied Energy, Elsevier, vol. 239(C), pages 1308-1321.
    6. Sharma, Nishesh & Jaiswal, Krishna Kumar & Kumar, Vinod & Vlaskin, Mikhail S. & Nanda, Manisha & Rautela, Indra & Tomar, Mahipal Singh & Ahmad, Waseem, 2021. "Effect of catalyst and temperature on the quality and productivity of HTL bio-oil from microalgae: A review," Renewable Energy, Elsevier, vol. 174(C), pages 810-822.
    7. Rezaei, Mostafa & Akimov, Alexandr & Gray, Evan MacA., 2024. "Techno-economics of renewable hydrogen export: A case study for Australia-Japan," Applied Energy, Elsevier, vol. 374(C).
    8. Wang, Jianxiao & An, Qi & Zhao, Yue & Pan, Guangsheng & Song, Jie & Hu, Qinran & Tan, Chin-Woo, 2023. "Role of electrolytic hydrogen in smart city decarbonization in China," Applied Energy, Elsevier, vol. 336(C).
    9. Lopez, Gabriel & Galimova, Tansu & Fasihi, Mahdi & Bogdanov, Dmitrii & Breyer, Christian, 2023. "Towards defossilised steel: Supply chain options for a green European steel industry," Energy, Elsevier, vol. 273(C).
    10. Zhang, Xing & Wang, Kaige & Chen, Junhao & Zhu, Lingjun & Wang, Shurong, 2020. "Mild hydrogenation of bio-oil and its derived phenolic monomers over Pt–Ni bimetal-based catalysts," Applied Energy, Elsevier, vol. 275(C).
    11. Michel Noussan & Pier Paolo Raimondi & Rossana Scita & Manfred Hafner, 2020. "The Role of Green and Blue Hydrogen in the Energy Transition—A Technological and Geopolitical Perspective," Sustainability, MDPI, vol. 13(1), pages 1-26, December.
    12. Stefan Arens & Sunke Schlüters & Benedikt Hanke & Karsten von Maydell & Carsten Agert, 2020. "Sustainable Residential Energy Supply: A Literature Review-Based Morphological Analysis," Energies, MDPI, vol. 13(2), pages 1-28, January.
    13. Struhs, Ethan & Mirkouei, Amin & You, Yaqi & Mohajeri, Amir, 2020. "Techno-economic and environmental assessments for nutrient-rich biochar production from cattle manure: A case study in Idaho, USA," Applied Energy, Elsevier, vol. 279(C).
    14. Lee, Sanghun & Kim, Taehong & Han, Gwangwoo & Kang, Sungmin & Yoo, Young-Sung & Jeon, Sang-Yun & Bae, Joongmyeon, 2021. "Comparative energetic studies on liquid organic hydrogen carrier: A net energy analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 150(C).
    15. Ehrenstein, Michael & Galán-Martín, Ángel & Tulus, Victor & Guillén-Gosálbez, Gonzalo, 2020. "Optimising fuel supply chains within planetary boundaries: A case study of hydrogen for road transport in the UK," Applied Energy, Elsevier, vol. 276(C).
    16. Jing Sun & Yonggang Peng & Di Lu & Xiaofeng Chen & Weifeng Xu & Liguo Weng & Jun Wu, 2022. "Optimized Configuration and Operating Plan for Hydrogen Refueling Station with On-Site Electrolytic Production," Energies, MDPI, vol. 15(7), pages 1-20, March.
    17. Frank, Matthias & Deja, Robert & Peters, Roland & Blum, Ludger & Stolten, Detlef, 2018. "Bypassing renewable variability with a reversible solid oxide cell plant," Applied Energy, Elsevier, vol. 217(C), pages 101-112.
    18. Fan Li & Dong Liu & Ke Sun & Songheng Yang & Fangzheng Peng & Kexin Zhang & Guodong Guo & Yuan Si, 2024. "Towards a Future Hydrogen Supply Chain: A Review of Technologies and Challenges," Sustainability, MDPI, vol. 16(5), pages 1-36, February.
    19. Yunesky Masip Macía & Pablo Rodríguez Machuca & Angel Alexander Rodríguez Soto & Roberto Carmona Campos, 2021. "Green Hydrogen Value Chain in the Sustainability for Port Operations: Case Study in the Region of Valparaiso, Chile," Sustainability, MDPI, vol. 13(24), pages 1-17, December.
    20. Roksana Muzyka & Szymon Sobek & Mariusz Dudziak & Miloud Ouadi & Marcin Sajdak, 2023. "A Comparative Analysis of Waste Biomass Pyrolysis in Py-GC-MS and Fixed-Bed Reactors," Energies, MDPI, vol. 16(8), pages 1-15, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:17:y:2024:i:23:p:5966-:d:1530928. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.