IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v17y2025i2p540-d1565213.html
   My bibliography  Save this article

Evaluation and Analysis of Passive Energy Saving Renovation Measures for Rural Residential Buildings in Cold Regions: A Case Study in Tongchuan, China

Author

Listed:
  • Ping Cao

    (School of Architecture and Civil Engineering, Xi’an University of Science and Technology, Xi’an 710054, China)

  • Jiawei Wang

    (School of Architecture and Civil Engineering, Xi’an University of Science and Technology, Xi’an 710054, China)

  • Dinglei Huang

    (School of Architecture and Civil Engineering, Xi’an University of Science and Technology, Xi’an 710054, China)

  • Zhi Cao

    (School of Architecture and Civil Engineering, Xi’an University of Science and Technology, Xi’an 710054, China)

  • Danyang Li

    (School of Architecture and Civil Engineering, Xi’an University of Science and Technology, Xi’an 710054, China)

Abstract

Energy-saving renovation of rural residences is an effective means of promoting sustainable rural development. This study focuses on a single-story rural residential building located in Tongchuan City, Shaanxi Province, China (a cold region), as a case study. Retrofits were conducted on the exterior windows, roof, and exterior walls, with the addition of a sunroom. Using life cycle assessments (LCAs) and orthogonal experimental methods combined with value engineering principles, we calculated various indicators including the energy efficiency improvement rate, implied carbon emissions, proportion of implied carbon emissions, carbon footprint, carbon reduction rate, carbon payback period, and investment payback period. The impact of traditional retrofitting measures on these indicators was analyzed. The results indicate that carbon emissions from the production of building materials are a key concern among the embodied carbon emissions from the retrofits, while transportation, construction, and demolition contribute minimally. Changes in the depth of the sunroom had the most significant impact on comprehensive indicators, followed by changes to the roof. After retrofitting, the carbon reduction rate was underestimated by 9.35% to 12.02% due to embodied carbon emissions. The carbon payback period for all schemes is estimated to be between 3.27 and 4.21 years. Based on current market conditions, developing corresponding carbon economics can enhance the economic viability of the project. This approach extends the investment payback period by more than 7% while also helping to narrow the income gap between urban and rural residents to some extent. Overall, the environmental impact assessment of the alternative schemes promotes sustainable rural development and provides scientific and effective guidance for the construction of project decision-making evaluation systems and architectural designers.

Suggested Citation

  • Ping Cao & Jiawei Wang & Dinglei Huang & Zhi Cao & Danyang Li, 2025. "Evaluation and Analysis of Passive Energy Saving Renovation Measures for Rural Residential Buildings in Cold Regions: A Case Study in Tongchuan, China," Sustainability, MDPI, vol. 17(2), pages 1-25, January.
  • Handle: RePEc:gam:jsusta:v:17:y:2025:i:2:p:540-:d:1565213
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/17/2/540/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/17/2/540/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Wang, Manyu & Wei, Chu, 2024. "Toward sustainable heating: Assessment of the carbon mitigation potential from residential heating in northern rural China," Energy Policy, Elsevier, vol. 190(C).
    2. Yi He & Yanting Wang & Ziye Song & Hongwen Yu & Yibing Xue, 2023. "Study on Carbon Emissions from the Renovation of Old Residential Areas in Cold Regions of China," Sustainability, MDPI, vol. 15(4), pages 1-17, February.
    3. Handing Guo & Wanzhen Qiao & Jiren Liu, 2019. "Dynamic Feedback Analysis of Influencing Factors of Existing Building Energy-Saving Renovation Market Based on System Dynamics in China," Sustainability, MDPI, vol. 11(1), pages 1-16, January.
    4. Yanqiu Cui & Ninghan Sun & Hongbin Cai & Simeng Li, 2020. "Indoor Temperature Improvement and Energy-Saving Renovations in Rural Houses of China’s Cold Region—A Case Study of Shandong Province," Energies, MDPI, vol. 13(4), pages 1-26, February.
    5. Piccardo, Chiara & Gustavsson, Leif, 2023. "Deep energy retrofits using different retrofit materials under different scenarios: Life cycle cost and primary energy implications," Energy, Elsevier, vol. 281(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tianjian Yang & Ye Li & Simin Zhou & Yu Zhang, 2019. "Dynamic Feedback Analysis of Influencing Factors and Challenges of Dockless Bike-Sharing Sustainability in China," Sustainability, MDPI, vol. 11(17), pages 1-17, August.
    2. Yingtao Qi & Xiaodi Li & Yupeng Wang & Dian Zhou, 2023. "Research on Indoor Thermal Environment Analysis and Optimization Strategy of Rural Dwellings around Xi’an Based on PET Evaluation," Sustainability, MDPI, vol. 15(10), pages 1-25, May.
    3. Troy Malatesta & Gregory M. Morrison & Jessica K. Breadsell & Christine Eon, 2023. "A Systematic Literature Review of the Interplay between Renewable Energy Systems and Occupant Practices," Sustainability, MDPI, vol. 15(12), pages 1-27, June.
    4. Handing Guo & Wanzhen Qiao & Yuehong Zheng, 2020. "Effectiveness Evaluation of Financing Platform Operation of Buildings Energy Saving Transformation Using ANP-Fuzzy in China: An Empirical Study," Sustainability, MDPI, vol. 12(7), pages 1-19, April.
    5. Ernesto A. Lagarda-Leyva & Angel Ruiz, 2019. "A Systems Thinking Model to Support Long-Term Bearability of the Healthcare System: The Case of the Province of Quebec," Sustainability, MDPI, vol. 11(24), pages 1-13, December.
    6. Jongyeon Lim & Wonjun Choi, 2022. "Influence of a Better Prediction of Thermal Satisfaction for the Implementation of an HVAC-Based Demand Response Strategy," Energies, MDPI, vol. 15(9), pages 1-11, April.
    7. Du, Qiang & Han, Xiao & Li, Yi & Li, Zhe & Xia, Bo & Guo, Xiqian, 2021. "The energy rebound effect of residential buildings: Evidence from urban and rural areas in China," Energy Policy, Elsevier, vol. 153(C).
    8. Jason Jihoon Ree & Kwangsoo Kim, 2019. "Smart Grid R&D Planning Based on Patent Analysis," Sustainability, MDPI, vol. 11(10), pages 1-25, May.
    9. Chaojie Ren & Jie Lin & Nini Guo, 2024. "Performance and Optimization of Novel Solar-Assisted Heat Pump System with Hybrid Thermal Energy Storage," Energies, MDPI, vol. 17(23), pages 1-15, November.
    10. Binglu Wu & Di Mu & Yi Luo & Zhengguang Xiao & Jilong Zhao & Dongxu Cui, 2022. "Rural Ecological Problems in China from 2013 to 2022: A Review of Research Hotspots, Geographical Distribution, and Countermeasures," Land, MDPI, vol. 11(8), pages 1-22, August.
    11. Qingsong Ma & Cui Xu & Xiaofei Chen & Weijun Gao & Xindong Wei, 2022. "Experimental and Simulation Research on the Energy-Saving Potential of a Sunspace—Taking an Apartment in Qingdao as an Example," Sustainability, MDPI, vol. 15(1), pages 1-21, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:17:y:2025:i:2:p:540-:d:1565213. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.