IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v16y2024i10p4259-d1397233.html
   My bibliography  Save this article

Sustainable CO 2 Refrigeration System for Fish Cold Storage Facility Using a Renewable Integrated System with Solar, Wind and Tidal Energy for Cape Verde—Analyzing Scenarios

Author

Listed:
  • João Garcia

    (Instituto Superior de Engenharia de Lisboa, Polytechnic University of Lisbon, R. Conselheiro Emídio Navarro 1, 1959-007 Lisboa, Portugal
    The Unit for Innovation and Research in Engineering, Instituto Superior de Engenharia de Lisboa, Polytechnic University of Lisbon, R. Conselheiro Emídio Navarro 1, 1959-007 Lisboa, Portugal
    Marine and Environmental Sciences Centre, Instituto Politécnico de Setúbal, 2910-761 Setúbal, Portugal)

  • Arian Semedo

    (Instituto Superior de Engenharia de Lisboa, Polytechnic University of Lisbon, R. Conselheiro Emídio Navarro 1, 1959-007 Lisboa, Portugal)

Abstract

This study compares four feasible alternative solutions for an integrated cold storage system in the city of Tarrafal, Santiago, Cape Verde. Integrated systems using grid electricity are compared with autonomous systems generating electrical energy from renewable sources, alongside various types of refrigeration facility systems. Its objective is to assess the energy efficiency, financial feasibility, and environmental impact across four scenarios. Scenario 1 utilizes two R134a refrigeration units powered by the public grid. Scenario 2 employs a transcritical R744 (CO 2 ) system using grid electricity. Scenario 3 incorporates R744 and autonomous renewable energy. Scenario 4 employs R744 for refrigeration with seawater heat exchange and autonomous renewable energy sources. The findings favor Scenario 4, emitting 15,882 kg CO 2 eq with a 5-year return on investment. Autonomous electricity production in this scenario reduces emissions by 95%. Despite an initial cost of EUR 769,172.00, Scenario 3 demonstrates financial viability, contributing to energy sustainability. This autonomous production reduces emissions by 360,697 kg CO 2 compared to conventional systems, highlighting the positive impact of local renewable energy integration.

Suggested Citation

  • João Garcia & Arian Semedo, 2024. "Sustainable CO 2 Refrigeration System for Fish Cold Storage Facility Using a Renewable Integrated System with Solar, Wind and Tidal Energy for Cape Verde—Analyzing Scenarios," Sustainability, MDPI, vol. 16(10), pages 1-20, May.
  • Handle: RePEc:gam:jsusta:v:16:y:2024:i:10:p:4259-:d:1397233
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/16/10/4259/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/16/10/4259/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Segurado, Raquel & Krajacic, Goran & Duic, Neven & Alves, Luís, 2011. "Increasing the penetration of renewable energy resources in S. Vicente, Cape Verde," Applied Energy, Elsevier, vol. 88(2), pages 466-472, February.
    2. Alaa Alaidroos, 2023. "Transient Behavior Analysis of the Infiltration Heat Recovery of Exterior Building Walls," Energies, MDPI, vol. 16(20), pages 1-21, October.
    3. Maouris, Georgios & Sarabia Escriva, Emilio Jose & Acha, Salvador & Shah, Nilay & Markides, Christos N., 2020. "CO2 refrigeration system heat recovery and thermal storage modelling for space heating provision in supermarkets: An integrated approach," Applied Energy, Elsevier, vol. 264(C).
    4. Juhyun Bak & Jabeom Koo & Sungmin Yoon & Hyunwoo Lim, 2022. "Thermal Draft Load Coefficient for Heating Load Differences Caused by Stack-Driven Infiltration by Floor in Multifamily High-Rise Buildings," Energies, MDPI, vol. 15(4), pages 1-21, February.
    5. Kim, Yong-Hwan & Lim, Hee-Chang, 2017. "Effect of island topography and surface roughness on the estimation of annual energy production of offshore wind farms," Renewable Energy, Elsevier, vol. 103(C), pages 106-114.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Østergaard, P.A. & Lund, H. & Thellufsen, J.Z. & Sorknæs, P. & Mathiesen, B.V., 2022. "Review and validation of EnergyPLAN," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
    2. Xydis, George, 2013. "A techno-economic and spatial analysis for the optimal planning of wind energy in Kythira island, Greece," International Journal of Production Economics, Elsevier, vol. 146(2), pages 440-452.
    3. Meschede, Henning & Holzapfel, Peter & Kadelbach, Florian & Hesselbach, Jens, 2016. "Classification of global island regarding the opportunity of using RES," Applied Energy, Elsevier, vol. 175(C), pages 251-258.
    4. Raza, Muhammad Amir & Khatri, Krishan Lal & Hussain, Arslan, 2022. "Transition from fossilized to defossilized energy system in Pakistan," Renewable Energy, Elsevier, vol. 190(C), pages 19-29.
    5. Segurado, R. & Madeira, J.F.A. & Costa, M. & Duić, N. & Carvalho, M.G., 2016. "Optimization of a wind powered desalination and pumped hydro storage system," Applied Energy, Elsevier, vol. 177(C), pages 487-499.
    6. Anna Flessa & Dimitris Fragkiadakis & Eleftheria Zisarou & Panagiotis Fragkos, 2023. "Developing an Integrated Energy–Economy Model Framework for Islands," Energies, MDPI, vol. 16(3), pages 1-32, January.
    7. Zhang, Sufang & Andrews-Speed, Philip & Perera, Pradeep, 2015. "The evolving policy regime for pumped storage hydroelectricity in China: A key support for low-carbon energy," Applied Energy, Elsevier, vol. 150(C), pages 15-24.
    8. Chadee, Xsitaaz T. & Clarke, Ricardo M., 2018. "Wind resources and the levelized cost of wind generated electricity in the Caribbean islands of Trinidad and Tobago," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P2), pages 2526-2540.
    9. Sarabia Escriva, Emilio José & Hart, Matthew & Acha, Salvador & Soto Francés, Víctor & Shah, Nilay & Markides, Christos N., 2022. "Techno-economic evaluation of integrated energy systems for heat recovery applications in food retail buildings," Applied Energy, Elsevier, vol. 305(C).
    10. Hrvoje Dorotić & Kristijan Čuljak & Josip Miškić & Tomislav Pukšec & Neven Duić, 2022. "Technical and Economic Assessment of Supermarket and Power Substation Waste Heat Integration into Existing District Heating Systems," Energies, MDPI, vol. 15(5), pages 1-29, February.
    11. Ringkjøb, Hans-Kristian & Haugan, Peter M. & Nybø, Astrid, 2020. "Transitioning remote Arctic settlements to renewable energy systems – A modelling study of Longyearbyen, Svalbard," Applied Energy, Elsevier, vol. 258(C).
    12. Mohammad K. Najjar & Eduardo Linhares Qualharini & Ahmed W. A. Hammad & Dieter Boer & Assed Haddad, 2019. "Framework for a Systematic Parametric Analysis to Maximize Energy Output of PV Modules Using an Experimental Design," Sustainability, MDPI, vol. 11(10), pages 1-24, May.
    13. Guo, Jiangfeng & Song, Jian & Han, Zengxiao & Pervunin, Konstantin S. & Markides, Christos N., 2022. "Investigation of the thermohydraulic characteristics of vertical supercritical CO2 flows at cooling conditions," Energy, Elsevier, vol. 256(C).
    14. William López-Castrillón & Héctor H. Sepúlveda & Cristian Mattar, 2021. "Off-Grid Hybrid Electrical Generation Systems in Remote Communities: Trends and Characteristics in Sustainability Solutions," Sustainability, MDPI, vol. 13(11), pages 1-29, May.
    15. Mimica, Marko & Krajačić, Goran, 2021. "The Smart Islands method for defining energy planning scenarios on islands," Energy, Elsevier, vol. 237(C).
    16. Wang, Yao & Wang, Qianlong & Yu, Jianlin & Qian, Suxin, 2023. "A heat pump dual temperature display cabinet using natural refrigerants," Applied Energy, Elsevier, vol. 330(PB).
    17. Pukšec, Tomislav & Vad Mathiesen, Brian & Duić, Neven, 2013. "Potentials for energy savings and long term energy demand of Croatian households sector," Applied Energy, Elsevier, vol. 101(C), pages 15-25.
    18. Berna-Escriche, César & Rivera, Yago & Alvarez-Piñeiro, Lucas & Muñoz-Cobo, José Luis, 2024. "Best estimate plus uncertainty methodology for forecasting electrical balances in isolated grids: The decarbonized Canary Islands by 2040," Energy, Elsevier, vol. 294(C).
    19. Schallenberg-Rodríguez, Julieta & Del Rio-Gamero, Beatriz & Melian-Martel, Noemi & Lis Alecio, Tyrone & González Herrera, Javier, 2020. "Energy supply of a large size desalination plant using wave energy. Practical case: North of Gran Canaria," Applied Energy, Elsevier, vol. 278(C).
    20. Binama, Maxime & Kan, Kan & Chen, Hui-Xiang & Zheng, Yuan & Zhou, Daqing & Su, Wen-Tao & Muhirwa, Alexis & Ntayomba, James, 2021. "Flow instability transferability characteristics within a reversible pump turbine (RPT) under large guide vane opening (GVO)," Renewable Energy, Elsevier, vol. 179(C), pages 285-307.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:16:y:2024:i:10:p:4259-:d:1397233. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.