IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v17y2024i23p5903-d1528555.html
   My bibliography  Save this article

Cooperative Control Strategy of Optical Storage System Based on an Alternating Sequence Filter

Author

Listed:
  • Zifen Han

    (Electric Power Control Center, State Grid Gansu Electric Power Company, Lanzhou 730030, China)

  • Yun Zhang

    (School of Mechano-Electronic Engineering, Xidian University, Xi’an 710071, China)

  • Biao Tian

    (School of Mechano-Electronic Engineering, Xidian University, Xi’an 710071, China)

  • Yi Fan

    (Electric Power Control Center, State Grid Gansu Electric Power Company Zhangye Power Supply Branch, Zhangye 734000, China)

  • Chao Zhang

    (School of Mechano-Electronic Engineering, Xidian University, Xi’an 710071, China)

  • Huijuan Wu

    (Electric Power Control Center, State Grid Gansu Electric Power Company Zhangye Power Supply Branch, Zhangye 734000, China)

Abstract

Due to photovoltaic (PV) power generation depending on the environment, its output power is volatile, and effectively dealing with its power fluctuation has become a key concern. Aiming at this problem, this article presents an optical storage cooperative control technology based on an Alternating Sequence Filter (ASF), which controls the power management of the Energy Storage System (ESS) consisting of a vanadium redox battery, battery, and supercapacitor. Firstly, an ASF is designed to stabilize the PV power generation by alternating sequence and improve system response speed. Secondly, according to the output signal of the filter, the charge and discharge of the three energy storage units are dynamically adjusted, and the power fluctuation is compensated in real-time to improve the system stability and conversion efficiency. Finally, the simulation results of actual illumination show that the control strategy calls the ESS to stabilize the power fluctuation, so that the power of the direct current bus is stabilized at about 15 kw, and the fluctuation is maintained between −4.48% and 4.05%. The strategy significantly reduces power fluctuation and improves the dynamic response ability and energy storage utilization of the system.

Suggested Citation

  • Zifen Han & Yun Zhang & Biao Tian & Yi Fan & Chao Zhang & Huijuan Wu, 2024. "Cooperative Control Strategy of Optical Storage System Based on an Alternating Sequence Filter," Energies, MDPI, vol. 17(23), pages 1-15, November.
  • Handle: RePEc:gam:jeners:v:17:y:2024:i:23:p:5903-:d:1528555
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/17/23/5903/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/17/23/5903/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Jiaqi Liu & Hongji Hu & Samson S. Yu & Hieu Trinh, 2023. "Virtual Power Plant with Renewable Energy Sources and Energy Storage Systems for Sustainable Power Grid-Formation, Control Techniques and Demand Response," Energies, MDPI, vol. 16(9), pages 1-28, April.
    2. Hui Huang & Shilin Nie & Jin Lin & Yuanyuan Wang & Jun Dong, 2020. "Optimization of Peer-to-Peer Power Trading in a Microgrid with Distributed PV and Battery Energy Storage Systems," Sustainability, MDPI, vol. 12(3), pages 1-20, January.
    3. Djamila Rekioua, 2023. "Energy Storage Systems for Photovoltaic and Wind Systems: A Review," Energies, MDPI, vol. 16(9), pages 1-26, May.
    4. Kang, Dongju & Kang, Doeun & Hwangbo, Sumin & Niaz, Haider & Lee, Won Bo & Liu, J. Jay & Na, Jonggeol, 2023. "Optimal planning of hybrid energy storage systems using curtailed renewable energy through deep reinforcement learning," Energy, Elsevier, vol. 284(C).
    5. Wang, Junjie & Ye, Li & Ding, Xiaoyu & Dang, Yaoguo, 2024. "A novel seasonal grey prediction model with time-lag and interactive effects for forecasting the photovoltaic power generation," Energy, Elsevier, vol. 304(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sergio Cantillo-Luna & Ricardo Moreno-Chuquen & David Celeita & George J. Anders, 2024. "A Stochastic Decision-Making Tool Suite for Distributed Energy Resources Integration in Energy Markets," Energies, MDPI, vol. 17(10), pages 1-28, May.
    2. Olga Bogdanova & Karīna Viskuba & Laila Zemīte, 2023. "A Review of Barriers and Enables in Demand Response Performance Chain," Energies, MDPI, vol. 16(18), pages 1-33, September.
    3. Alain Aoun & Mehdi Adda & Adrian Ilinca & Mazen Ghandour & Hussein Ibrahim, 2024. "Optimizing Virtual Power Plant Management: A Novel MILP Algorithm to Minimize Levelized Cost of Energy, Technical Losses, and Greenhouse Gas Emissions," Energies, MDPI, vol. 17(16), pages 1-23, August.
    4. M. M. Hasan & Shakhawat Hossain & M. Mofijur & Zobaidul Kabir & Irfan Anjum Badruddin & T. M. Yunus Khan & Esam Jassim, 2023. "Harnessing Solar Power: A Review of Photovoltaic Innovations, Solar Thermal Systems, and the Dawn of Energy Storage Solutions," Energies, MDPI, vol. 16(18), pages 1-30, September.
    5. Md. Tanjil Sarker & Mohammed Hussein Saleh Mohammed Haram & Siow Jat Shern & Gobbi Ramasamy & Fahmid Al Farid, 2024. "Readiness of Malaysian PV System to Utilize Energy Storage System with Second-Life Electric Vehicle Batteries," Energies, MDPI, vol. 17(16), pages 1-23, August.
    6. Liu, Junhong & Long, Qinfei & Liu, Rong-Peng & Liu, Wenjie & Hou, Yunhe, 2023. "Online distributed optimization for spatio-temporally constrained real-time peer-to-peer energy trading," Applied Energy, Elsevier, vol. 331(C).
    7. Faris E. Alfaris & Faris Almutairi, 2024. "Performance Assessment User Interface to Enhance the Utilization of Grid-Connected Residential PV Systems," Sustainability, MDPI, vol. 16(5), pages 1-26, February.
    8. Mansour Selseleh Jonban & Luis Romeral & Elyas Rakhshani & Mousa Marzband, 2023. "Flexible Smart Energy-Management Systems Using an Online Tendering Process Framework for Microgrids," Energies, MDPI, vol. 16(13), pages 1-19, June.
    9. Capper, Timothy & Gorbatcheva, Anna & Mustafa, Mustafa A. & Bahloul, Mohamed & Schwidtal, Jan Marc & Chitchyan, Ruzanna & Andoni, Merlinda & Robu, Valentin & Montakhabi, Mehdi & Scott, Ian J. & Franci, 2022. "Peer-to-peer, community self-consumption, and transactive energy: A systematic literature review of local energy market models," Renewable and Sustainable Energy Reviews, Elsevier, vol. 162(C).
    10. Mark Kipngetich Kiptoo & Oludamilare Bode Adewuyi & Masahiro Furukakoi & Paras Mandal & Tomonobu Senjyu, 2023. "Integrated Multi-Criteria Planning for Resilient Renewable Energy-Based Microgrid Considering Advanced Demand Response and Uncertainty," Energies, MDPI, vol. 16(19), pages 1-25, September.
    11. Jong-Chan Kim & Jun-Ho Huh & Jae-Sub Ko, 2020. "Optimization Design and Test Bed of Fuzzy Control Rule Base for PV System MPPT in Micro Grid," Sustainability, MDPI, vol. 12(9), pages 1-25, May.
    12. Cui, Can & Xue, Jing, 2024. "Energy and comfort aware operation of multi-zone HVAC system through preference-inspired deep reinforcement learning," Energy, Elsevier, vol. 292(C).
    13. Alaa A. F. Husain & Maryam Huda Ahmad Phesal & Mohd Zainal Abidin Ab Kadir & Ungku Anisa Ungku Amirulddin & Abdulhadi H. J. Junaidi, 2021. "A Decade of Transitioning Malaysia toward a High-Solar PV Energy Penetration Nation," Sustainability, MDPI, vol. 13(17), pages 1-16, September.
    14. C Popa, 2023. "Comprehensive analysis of offshore wind-photovoltaic hybrid systems: unveiling state-of-the-art autonomous components for maritime applications," Technium, Technium Science, vol. 19(1), pages 50-58.
    15. Chunchao Wu & Yonghong Zhao & Wulin Li & Jianjun Fan & Haixiang Xu & Dingkun Yuan & Zhongqian Ling, 2024. "Layered Operation Optimization Methods for Concentrated Solar Power (CSP) Technology and Multi-Energy Flow Coupling Systems," Energies, MDPI, vol. 17(24), pages 1-19, December.
    16. Athanasios G. Lazaropoulos & Helen C. Leligou, 2024. "Integration of LiFi, BPL, and Fiber Optic Technologies in Smart Grid Backbone Networks: A Proposal for Exploiting the LiFi LED Street Lighting Networks of Power Utilities and Smart Cities," Sustainability, MDPI, vol. 16(2), pages 1-30, January.
    17. Chen, Qi & Kuang, Zhonghong & Liu, Xiaohua & Zhang, Tao, 2024. "Application-oriented assessment of grid-connected PV-battery system with deep reinforcement learning in buildings considering electricity price dynamics," Applied Energy, Elsevier, vol. 364(C).
    18. Masoumeh Sharifpour & Mohammad Taghi Ameli & Hossein Ameli & Goran Strbac, 2023. "A Resilience-Oriented Approach for Microgrid Energy Management with Hydrogen Integration during Extreme Events," Energies, MDPI, vol. 16(24), pages 1-18, December.
    19. Artur Pawelec & Agnieszka Pawlak & Aleksandra Pyk & Paweł Grzegorz Kossakowski, 2024. "Research on the Possibilities of Expanding the Photovoltaic Installation in the Microgrid Structure of Kielce University of Technology Using Digital Twin Technology," Sustainability, MDPI, vol. 16(21), pages 1-14, October.
    20. João Fausto L. de Oliveira & Paulo S. G. de Mattos Neto & Hugo Valadares Siqueira & Domingos S. de O. Santos & Aranildo R. Lima & Francisco Madeiro & Douglas A. P. Dantas & Mariana de Morais Cavalcant, 2023. "Forecasting Methods for Photovoltaic Energy in the Scenario of Battery Energy Storage Systems: A Comprehensive Review," Energies, MDPI, vol. 16(18), pages 1-20, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:17:y:2024:i:23:p:5903-:d:1528555. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.