IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v17y2024i23p5881-d1527705.html
   My bibliography  Save this article

Multi-Level Decomposition and Interpretability-Enhanced Air Conditioning Load Forecasting Study

Author

Listed:
  • Xinting Yang

    (State Grid Sichuan Economic Research Institute, Chengdu 610041, China)

  • Ling Zhang

    (State Grid Sichuan Electric Power Company, Chengdu 610041, China)

  • Hong Zhao

    (State Grid Sichuan Electric Power Company, Chengdu 610041, China)

  • Wenhua Zhang

    (State Grid Sichuan Electric Power Company, Chengdu 610041, China)

  • Chuan Long

    (State Grid Sichuan Economic Research Institute, Chengdu 610041, China)

  • Gang Wu

    (State Grid Sichuan Economic Research Institute, Chengdu 610041, China)

  • Junhao Zhao

    (College of Electrical Engineering, Sichuan University, Chengdu 610065, China)

  • Xiaodong Shen

    (College of Electrical Engineering, Sichuan University, Chengdu 610065, China)

Abstract

This study seeks to improve the accuracy of air conditioning load forecasting to address the challenges of load management in power systems during high-temperature periods in the summer. Given the limitations of traditional forecasting models in capturing different frequency components and noise within complex load sequences, this paper proposes a multi-level decomposition forecasting model using complete ensemble empirical mode decomposition with adaptive noise (CEEMDAN), sample entropy (SE), variational mode decomposition (VMD), and long short-term memory (LSTM). First, CEEMDAN is used for the preliminary decomposition of the raw air-conditioning load series, with modal components aggregated by sample entropy to generate high-, medium-, and low-frequency subsequences. VMD then performs a secondary decomposition on the high-frequency subsequence to reduce its complexity, while LSTM is applied to each subsequence for prediction. The final prediction result of the air-conditioning load is obtained through reconstruction. To validate model performance, this paper uses air-conditioning load data from Nanchong City and Sichuan Province, for experimental analysis. Results show that the proposed method significantly outperforms the LSTM model without decomposition and other benchmark models in prediction accuracy, with the Root Mean Square Error (RMSE) reductions ranging from 40.26% to 74.18% and the Modified Mean Absolute Percentage Error (MMAPE) reductions from 37.75% to 73.41%. By employing the SHAP (Shapley additive explanations) method for both global and local interpretability, the model reveals the influence of key factors, such as historical load and temperature, on load forecasting. The decomposition and aggregation approach introduced in this paper substantially enhances forecasting accuracy, providing a scientific foundation for power system load management and dispatch.

Suggested Citation

  • Xinting Yang & Ling Zhang & Hong Zhao & Wenhua Zhang & Chuan Long & Gang Wu & Junhao Zhao & Xiaodong Shen, 2024. "Multi-Level Decomposition and Interpretability-Enhanced Air Conditioning Load Forecasting Study," Energies, MDPI, vol. 17(23), pages 1-20, November.
  • Handle: RePEc:gam:jeners:v:17:y:2024:i:23:p:5881-:d:1527705
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/17/23/5881/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/17/23/5881/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Gao, Zhikun & Yu, Junqi & Zhao, Anjun & Hu, Qun & Yang, Siyuan, 2022. "A hybrid method of cooling load forecasting for large commercial building based on extreme learning machine," Energy, Elsevier, vol. 238(PC).
    2. Jianwei Mi & Libin Fan & Xuechao Duan & Yuanying Qiu, 2018. "Short-Term Power Load Forecasting Method Based on Improved Exponential Smoothing Grey Model," Mathematical Problems in Engineering, Hindawi, vol. 2018, pages 1-11, March.
    3. Zhou, Feite & Huang, Zhehao & Zhang, Changhong, 2022. "Carbon price forecasting based on CEEMDAN and LSTM," Applied Energy, Elsevier, vol. 311(C).
    4. Dahl, Magnus & Brun, Adam & Andresen, Gorm B., 2017. "Using ensemble weather predictions in district heating operation and load forecasting," Applied Energy, Elsevier, vol. 193(C), pages 455-465.
    5. He, Feifei & Zhou, Jianzhong & Feng, Zhong-kai & Liu, Guangbiao & Yang, Yuqi, 2019. "A hybrid short-term load forecasting model based on variational mode decomposition and long short-term memory networks considering relevant factors with Bayesian optimization algorithm," Applied Energy, Elsevier, vol. 237(C), pages 103-116.
    6. Wang, Lan & Lee, Eric W.M. & Yuen, Richard K.K., 2018. "Novel dynamic forecasting model for building cooling loads combining an artificial neural network and an ensemble approach," Applied Energy, Elsevier, vol. 228(C), pages 1740-1753.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wang, Ran & Lu, Shilei & Feng, Wei, 2020. "A novel improved model for building energy consumption prediction based on model integration," Applied Energy, Elsevier, vol. 262(C).
    2. Taorong Jia & Lixiao Yao & Guoqing Yang & Qi He, 2022. "A Short-Term Power Load Forecasting Method of Based on the CEEMDAN-MVO-GRU," Sustainability, MDPI, vol. 14(24), pages 1-18, December.
    3. Binglin Li & Yong Shao & Yufeng Lian & Pai Li & Qiang Lei, 2023. "Bayesian Optimization-Based LSTM for Short-Term Heating Load Forecasting," Energies, MDPI, vol. 16(17), pages 1-14, August.
    4. Xiao, Wenjing & Mo, Li & Xu, Zhanxing & Liu, Chang & Zhang, Yongchuan, 2024. "A hybrid electric load forecasting model based on decomposition considering fisher information," Applied Energy, Elsevier, vol. 364(C).
    5. Gao, Zhikun & Yang, Siyuan & Yu, Junqi & Zhao, Anjun, 2024. "Hybrid forecasting model of building cooling load based on combined neural network," Energy, Elsevier, vol. 297(C).
    6. Haoran Zhao & Sen Guo, 2021. "Uncertain Interval Forecasting for Combined Electricity-Heat-Cooling-Gas Loads in the Integrated Energy System Based on Multi-Task Learning and Multi-Kernel Extreme Learning Machine," Mathematics, MDPI, vol. 9(14), pages 1-32, July.
    7. Bai, Yun & Deng, Shuyun & Pu, Ziqiang & Li, Chuan, 2024. "Carbon price forecasting using leaky integrator echo state networks with the framework of decomposition-reconstruction-integration," Energy, Elsevier, vol. 305(C).
    8. Lin Wang & Wuyue An & Feng‐Ting Li, 2024. "Text‐based corn futures price forecasting using improved neural basis expansion network," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 43(6), pages 2042-2063, September.
    9. Venkataramana Veeramsetty & Arjun Mohnot & Gaurav Singal & Surender Reddy Salkuti, 2021. "Short Term Active Power Load Prediction on A 33/11 kV Substation Using Regression Models," Energies, MDPI, vol. 14(11), pages 1-21, May.
    10. Yang, Ting & Zhao, Liyuan & Li, Wei & Zomaya, Albert Y., 2021. "Dynamic energy dispatch strategy for integrated energy system based on improved deep reinforcement learning," Energy, Elsevier, vol. 235(C).
    11. Magnus Dahl & Adam Brun & Oliver S. Kirsebom & Gorm B. Andresen, 2018. "Improving Short-Term Heat Load Forecasts with Calendar and Holiday Data," Energies, MDPI, vol. 11(7), pages 1-16, June.
    12. Luo, X.J. & Oyedele, Lukumon O. & Ajayi, Anuoluwapo O. & Akinade, Olugbenga O. & Owolabi, Hakeem A. & Ahmed, Ashraf, 2020. "Feature extraction and genetic algorithm enhanced adaptive deep neural network for energy consumption prediction in buildings," Renewable and Sustainable Energy Reviews, Elsevier, vol. 131(C).
    13. Alfredo Candela Esclapez & Miguel López García & Sergio Valero Verdú & Carolina Senabre Blanes, 2022. "Automatic Selection of Temperature Variables for Short-Term Load Forecasting," Sustainability, MDPI, vol. 14(20), pages 1-22, October.
    14. Dong, Hanjiang & Zhu, Jizhong & Li, Shenglin & Wu, Wanli & Zhu, Haohao & Fan, Junwei, 2023. "Short-term residential household reactive power forecasting considering active power demand via deep Transformer sequence-to-sequence networks," Applied Energy, Elsevier, vol. 329(C).
    15. Gautham Krishnadas & Aristides Kiprakis, 2020. "A Machine Learning Pipeline for Demand Response Capacity Scheduling," Energies, MDPI, vol. 13(7), pages 1-25, April.
    16. Lei Dai & Haiying Wang, 2024. "An Improved WOA (Whale Optimization Algorithm)-Based CNN-BIGRU-CBAM Model and Its Application to Short-Term Power Load Forecasting," Energies, MDPI, vol. 17(11), pages 1-24, May.
    17. Hang Yin & Zeyu Wu & Junchao Wu & Junjie Jiang & Yalin Chen & Mingxuan Chen & Shixuan Luo & Lijun Gao, 2023. "A Hybrid Medium and Long-Term Relative Humidity Point and Interval Prediction Method for Intensive Poultry Farming," Mathematics, MDPI, vol. 11(14), pages 1-22, July.
    18. Chicherin, Stanislav, 2020. "Methodology for analyzing operation data for optimum district heating (DH) system design: Ten-year data of Omsk, Russia," Energy, Elsevier, vol. 211(C).
    19. Qing Yin & Chunmiao Han & Ailin Li & Xiao Liu & Ying Liu, 2024. "A Review of Research on Building Energy Consumption Prediction Models Based on Artificial Neural Networks," Sustainability, MDPI, vol. 16(17), pages 1-30, September.
    20. Zhu, Jizhong & Dong, Hanjiang & Zheng, Weiye & Li, Shenglin & Huang, Yanting & Xi, Lei, 2022. "Review and prospect of data-driven techniques for load forecasting in integrated energy systems," Applied Energy, Elsevier, vol. 321(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:17:y:2024:i:23:p:5881-:d:1527705. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.