IDEAS home Printed from https://ideas.repec.org/a/hin/jnlmpe/3894723.html
   My bibliography  Save this article

Short-Term Power Load Forecasting Method Based on Improved Exponential Smoothing Grey Model

Author

Listed:
  • Jianwei Mi
  • Libin Fan
  • Xuechao Duan
  • Yuanying Qiu

Abstract

In order to improve the prediction accuracy, this paper proposes a short-term power load forecasting method based on the improved exponential smoothing grey model. It firstly determines the main factor affecting the power load using the grey correlation analysis. It then conducts power load forecasting using the improved multivariable grey model. The improved prediction model firstly carries out the smoothing processing of the original power load data using the first exponential smoothing method. Secondly, the grey prediction model with an optimized background value is established using the smoothed sequence which agrees with the exponential trend. Finally, the inverse exponential smoothing method is employed to restore the predicted value. The first exponential smoothing model uses the 0.618 method to search for the optimal smooth coefficient. The prediction model can take the effects of the influencing factors on the power load into consideration. The simulated results show that the proposed prediction algorithm has a satisfactory prediction effect and meets the requirements of short-term power load forecasting. This research not only further improves the accuracy and reliability of short-term power load forecasting but also extends the application scope of the grey prediction model and shortens the search interval.

Suggested Citation

  • Jianwei Mi & Libin Fan & Xuechao Duan & Yuanying Qiu, 2018. "Short-Term Power Load Forecasting Method Based on Improved Exponential Smoothing Grey Model," Mathematical Problems in Engineering, Hindawi, vol. 2018, pages 1-11, March.
  • Handle: RePEc:hin:jnlmpe:3894723
    DOI: 10.1155/2018/3894723
    as

    Download full text from publisher

    File URL: http://downloads.hindawi.com/journals/MPE/2018/3894723.pdf
    Download Restriction: no

    File URL: http://downloads.hindawi.com/journals/MPE/2018/3894723.xml
    Download Restriction: no

    File URL: https://libkey.io/10.1155/2018/3894723?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Fangze Zhou & Hui Zhou & Zhaoyan Li & Kai Zhao, 2022. "Multi-Step Ahead Short-Term Electricity Load Forecasting Using VMD-TCN and Error Correction Strategy," Energies, MDPI, vol. 15(15), pages 1-18, July.
    2. Lei Dai & Haiying Wang, 2024. "An Improved WOA (Whale Optimization Algorithm)-Based CNN-BIGRU-CBAM Model and Its Application to Short-Term Power Load Forecasting," Energies, MDPI, vol. 17(11), pages 1-24, May.
    3. Haoran Zhao & Sen Guo, 2021. "Uncertain Interval Forecasting for Combined Electricity-Heat-Cooling-Gas Loads in the Integrated Energy System Based on Multi-Task Learning and Multi-Kernel Extreme Learning Machine," Mathematics, MDPI, vol. 9(14), pages 1-32, July.
    4. Venkataramana Veeramsetty & Arjun Mohnot & Gaurav Singal & Surender Reddy Salkuti, 2021. "Short Term Active Power Load Prediction on A 33/11 kV Substation Using Regression Models," Energies, MDPI, vol. 14(11), pages 1-21, May.
    5. Taorong Jia & Lixiao Yao & Guoqing Yang & Qi He, 2022. "A Short-Term Power Load Forecasting Method of Based on the CEEMDAN-MVO-GRU," Sustainability, MDPI, vol. 14(24), pages 1-18, December.
    6. Fanidhar Dewangan & Almoataz Y. Abdelaziz & Monalisa Biswal, 2023. "Load Forecasting Models in Smart Grid Using Smart Meter Information: A Review," Energies, MDPI, vol. 16(3), pages 1-55, January.
    7. Alfredo Candela Esclapez & Miguel López García & Sergio Valero Verdú & Carolina Senabre Blanes, 2022. "Automatic Selection of Temperature Variables for Short-Term Load Forecasting," Sustainability, MDPI, vol. 14(20), pages 1-22, October.
    8. Şahin, Utkucan & Ballı, Serkan & Chen, Yan, 2021. "Forecasting seasonal electricity generation in European countries under Covid-19-induced lockdown using fractional grey prediction models and machine learning methods," Applied Energy, Elsevier, vol. 302(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hin:jnlmpe:3894723. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Mohamed Abdelhakeem (email available below). General contact details of provider: https://www.hindawi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.