Automatic Selection of Temperature Variables for Short-Term Load Forecasting
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- Jianwei Mi & Libin Fan & Xuechao Duan & Yuanying Qiu, 2018. "Short-Term Power Load Forecasting Method Based on Improved Exponential Smoothing Grey Model," Mathematical Problems in Engineering, Hindawi, vol. 2018, pages 1-11, March.
- Moral-Carcedo, Julián & Pérez-García, Julián, 2019. "Time of day effects of temperature and daylight on short term electricity load," Energy, Elsevier, vol. 174(C), pages 169-183.
- Haben, Stephen & Giasemidis, Georgios & Ziel, Florian & Arora, Siddharth, 2019. "Short term load forecasting and the effect of temperature at the low voltage level," International Journal of Forecasting, Elsevier, vol. 35(4), pages 1469-1484.
- Hong, Tao & Fan, Shu, 2016. "Probabilistic electric load forecasting: A tutorial review," International Journal of Forecasting, Elsevier, vol. 32(3), pages 914-938.
- Salah Bouktif & Ali Fiaz & Ali Ouni & Mohamed Adel Serhani, 2020. "Multi-Sequence LSTM-RNN Deep Learning and Metaheuristics for Electric Load Forecasting," Energies, MDPI, vol. 13(2), pages 1-21, January.
- Miguel López & Carlos Sans & Sergio Valero & Carolina Senabre, 2018. "Empirical Comparison of Neural Network and Auto-Regressive Models in Short-Term Load Forecasting," Energies, MDPI, vol. 11(8), pages 1-19, August.
- Imani, Maryam, 2021. "Electrical load-temperature CNN for residential load forecasting," Energy, Elsevier, vol. 227(C).
- Tao Hong & Pu Wang, 2013. "Fuzzy interaction regression for short term load forecasting," HSC Research Reports HSC/13/14, Hugo Steinhaus Center, Wroclaw University of Technology.
- Singh, Priyanka & Dwivedi, Pragya & Kant, Vibhor, 2019. "A hybrid method based on neural network and improved environmental adaptation method using Controlled Gaussian Mutation with real parameter for short-term load forecasting," Energy, Elsevier, vol. 174(C), pages 460-477.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Chabouni, Naima & Belarbi, Yacine & Benhassine, Wassim, 2020. "Electricity load dynamics, temperature and seasonality Nexus in Algeria," Energy, Elsevier, vol. 200(C).
- Wang, Pu & Liu, Bidong & Hong, Tao, 2016.
"Electric load forecasting with recency effect: A big data approach,"
International Journal of Forecasting, Elsevier, vol. 32(3), pages 585-597.
- Pu Wang & Bidong Liu & Tao Hong, 2015. "Electric load forecasting with recency effect: A big data approach," HSC Research Reports HSC/15/08, Hugo Steinhaus Center, Wroclaw University of Technology.
- Kei Hirose & Keigo Wada & Maiya Hori & Rin-ichiro Taniguchi, 2020. "Event Effects Estimation on Electricity Demand Forecasting," Energies, MDPI, vol. 13(21), pages 1-20, November.
- Filipe Rodrigues & Carlos Cardeira & João M. F. Calado & Rui Melicio, 2023. "Short-Term Load Forecasting of Electricity Demand for the Residential Sector Based on Modelling Techniques: A Systematic Review," Energies, MDPI, vol. 16(10), pages 1-26, May.
- Yijun Wang & Peiqian Guo & Nan Ma & Guowei Liu, 2022. "Robust Wavelet Transform Neural-Network-Based Short-Term Load Forecasting for Power Distribution Networks," Sustainability, MDPI, vol. 15(1), pages 1-17, December.
- Alfredo Candela Esclapez & Miguel López García & Sergio Valero Verdú & Carolina Senabre Blanes, 2022. "Reduction of Computational Burden and Accuracy Maximization in Short-Term Load Forecasting," Energies, MDPI, vol. 15(10), pages 1-18, May.
- Miguel López & Sergio Valero & Carlos Sans & Carolina Senabre, 2020. "Use of Available Daylight to Improve Short-Term Load Forecasting Accuracy," Energies, MDPI, vol. 14(1), pages 1-14, December.
- He Jiang & Weihua Zheng, 2022. "Deep learning with regularized robust long‐ and short‐term memory network for probabilistic short‐term load forecasting," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 41(6), pages 1201-1216, September.
- Florian Ziel, 2020. "Load Nowcasting: Predicting Actuals with Limited Data," Energies, MDPI, vol. 13(6), pages 1-15, March.
- Jasiński, Tomasz, 2022. "A new approach to modeling cycles with summer and winter demand peaks as input variables for deep neural networks," Renewable and Sustainable Energy Reviews, Elsevier, vol. 159(C).
- Fanidhar Dewangan & Almoataz Y. Abdelaziz & Monalisa Biswal, 2023. "Load Forecasting Models in Smart Grid Using Smart Meter Information: A Review," Energies, MDPI, vol. 16(3), pages 1-55, January.
- Manogaran Madhiarasan & Mohamed Louzazni, 2021. "Different Forecasting Horizons Based Performance Analysis of Electricity Load Forecasting Using Multilayer Perceptron Neural Network," Forecasting, MDPI, vol. 3(4), pages 1-35, November.
- Haben, Stephen & Arora, Siddharth & Giasemidis, Georgios & Voss, Marcus & Vukadinović Greetham, Danica, 2021. "Review of low voltage load forecasting: Methods, applications, and recommendations," Applied Energy, Elsevier, vol. 304(C).
- Gabriel Trierweiler Ribeiro & João Guilherme Sauer & Naylene Fraccanabbia & Viviana Cocco Mariani & Leandro dos Santos Coelho, 2020. "Bayesian Optimized Echo State Network Applied to Short-Term Load Forecasting," Energies, MDPI, vol. 13(9), pages 1-19, May.
- Niematallah Elamin & Mototsugu Fukushige, 2016. "A Quantile Regression Model for Electricity Peak Demand Forecasting: An Approach to Avoiding Power Blackouts," Discussion Papers in Economics and Business 16-22, Osaka University, Graduate School of Economics.
- Rostami-Tabar, Bahman & Ali, Mohammad M. & Hong, Tao & Hyndman, Rob J. & Porter, Michael D. & Syntetos, Aris, 2022.
"Forecasting for social good,"
International Journal of Forecasting, Elsevier, vol. 38(3), pages 1245-1257.
- Bahman Rostami-Tabar & Mohammad M Ali & Tao Hong & Rob J Hyndman & Michael D Porter & Aris Syntetos, 2020. "Forecasting for Social Good," Monash Econometrics and Business Statistics Working Papers 37/20, Monash University, Department of Econometrics and Business Statistics.
- Monika Zimmermann & Florian Ziel, 2024. "Efficient mid-term forecasting of hourly electricity load using generalized additive models," Papers 2405.17070, arXiv.org.
- Zhang, Yagang & Wang, Hui & Wang, Jingchao & Cheng, Xiaodan & Wang, Tong & Zhao, Zheng, 2024. "Ensemble optimization approach based on hybrid mode decomposition and intelligent technology for wind power prediction system," Energy, Elsevier, vol. 292(C).
- Ozdemir, Ali Can & Buluş, Kurtuluş & Zor, Kasım, 2022. "Medium- to long-term nickel price forecasting using LSTM and GRU networks," Resources Policy, Elsevier, vol. 78(C).
- Zhang, Ning & Li, Zhiying & Zou, Xun & Quiring, Steven M., 2019. "Comparison of three short-term load forecast models in Southern California," Energy, Elsevier, vol. 189(C).
More about this item
Keywords
accuracy; interpretability; short-term load forecasting; temperature analysis; temperature processing;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:14:y:2022:i:20:p:13339-:d:944451. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.