IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v17y2024i23p5868-d1527323.html
   My bibliography  Save this article

Electrical Model Analysis for Bifacial PV Modules Using Real Performance Data in Laboratory

Author

Listed:
  • Valentina González Becerra

    (Department of Electrical Engineering, Universidad Técnica Federico Santa Maria, Santiago 8940000, Chile)

  • Patricio Valdivia-Lefort

    (Department of Electrical Engineering, Universidad de Santiago de Chile, Santiago 8370003, Chile)

  • Rodrigo Barraza

    (Faculty of Engineering and Sciences, Universidad Adolfo Ibáñez, Santiago 7941169, Chile)

  • Jesús García García

    (Institute of Mechanical Engineering, Faculty of Engineering Sciences, Universidad Austral de Chile, Valdivia 5110566, Chile)

Abstract

The new PV technologies, such as bifacial modules, bring the challenge of analyzing the response of numerical models and their fit to actual measurements. Thus, this study explores various models available in the literature for simulating the IV curve behavior of bifacial photovoltaic modules. The analysis contains traditional models, such as single and double-diode models, and empirical or analytical methodologies. Therefore, this paper proposes and implements a model performance assessment framework. This framework aims to establish a common basis for comparison and verify the applicability of each model by contrasting it with experimental data under controlled conditions of irradiance and temperature. The study utilizes bifacial modules of PERC+, HJT, and n-PERT technologies, tracing IV curves using a high-precision A+A+A+ solar simulator and conducting two sets of laboratory illumination measurements: single-sided and double-sided. In the first case, each face of the module is illuminated separately, while in the latter, the incident frontal illuminating light is reflected on a reflective surface. Experimental data obtained from these measurements are used to evaluate three different approximations for bifacial IV curve models in the case of double-sided illumination. The employed model for single-sided illumination is a single-diode model. The evaluation of various models revealed that shadowing from frames and junction boxes contributes to an increase in the error of modeled IV curves. However, among the three evaluated bifacial electrical models, one exhibited superior performance, with current errors approaching approximately 20 % . To mitigate this discrepancy, a proposed methodology highlighted the significance of accurately estimating I o , suggesting its potential to reduce errors. This research provides a foundation for comparing electrical models to identify their strengths and limitations, paving the way for the development of more accurate modeling approaches tailored to bifacial modules. The insights gained from this study are crucial for enhancing the precision of IV curve predictions under various illumination conditions, which is essential for optimizing bifacial module performance in real-world applications.

Suggested Citation

  • Valentina González Becerra & Patricio Valdivia-Lefort & Rodrigo Barraza & Jesús García García, 2024. "Electrical Model Analysis for Bifacial PV Modules Using Real Performance Data in Laboratory," Energies, MDPI, vol. 17(23), pages 1-21, November.
  • Handle: RePEc:gam:jeners:v:17:y:2024:i:23:p:5868-:d:1527323
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/17/23/5868/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/17/23/5868/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Tina, Giuseppe Marco & Bontempo Scavo, Fausto & Merlo, Leonardo & Bizzarri, Fabrizio, 2021. "Comparative analysis of monofacial and bifacial photovoltaic modules for floating power plants," Applied Energy, Elsevier, vol. 281(C).
    2. Gu, Wenbo & Ma, Tao & Li, Meng & Shen, Lu & Zhang, Yijie, 2020. "A coupled optical-electrical-thermal model of the bifacial photovoltaic module," Applied Energy, Elsevier, vol. 258(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhong, Jianmei & Zhang, Wei & Xie, Lingzhi & Zhao, Oufan & Wu, Xin & Zeng, Xiding & Guo, Jiahong, 2023. "Development and challenges of bifacial photovoltaic technology and application in buildings: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 187(C).
    2. Elmehdi Mouhib & Leonardo Micheli & Florencia M. Almonacid & Eduardo F. Fernández, 2022. "Overview of the Fundamentals and Applications of Bifacial Photovoltaic Technology: Agrivoltaics and Aquavoltaics," Energies, MDPI, vol. 15(23), pages 1-30, November.
    3. Minan Tang & Jinping Li & Jiandong Qiu & Xi Guo & Bo An & Yaqi Zhang & Wenjuan Wang, 2023. "MPPT Strategy of Waterborne Bifacial Photovoltaic Power Generation System Based on Economic Model Predictive Control," Energies, MDPI, vol. 17(1), pages 1-20, December.
    4. Ma, Chao & Liu, Zhao, 2022. "Water-surface photovoltaics: Performance, utilization, and interactions with water eco-environment," Renewable and Sustainable Energy Reviews, Elsevier, vol. 167(C).
    5. Rahaman, Md Atiqur & Chambers, Terrence L. & Fekih, Afef & Wiecheteck, Giovana & Carranza, Gabriel & Possetti, Gustavo Rafael Collere, 2023. "Floating photovoltaic module temperature estimation: Modeling and comparison," Renewable Energy, Elsevier, vol. 208(C), pages 162-180.
    6. Xie, Jixing & Tang, Haida & Lyu, Yuanli & Liu, Wenjie & Tian, Xiangning & Li, Chunying, 2024. "Energy, environmental and economic performance of bi-facial photovoltaic noise barrier applied in city scale," Renewable Energy, Elsevier, vol. 237(PA).
    7. Li, Senji & Chen, Zhenwu & Liu, Xing & Zhang, Xiaochun & Zhou, Yong & Gu, Wenbo & Ma, Tao, 2021. "Numerical simulation of a novel pavement integrated photovoltaic thermal (PIPVT) module," Applied Energy, Elsevier, vol. 283(C).
    8. Ma, Tao & Guo, Zichang & Shen, Lu & Liu, Xing & Chen, Zhenwu & Zhou, Yong & Zhang, Xiaochun, 2021. "Performance modelling of photovoltaic modules under actual operating conditions considering loss mechanism and energy distribution," Applied Energy, Elsevier, vol. 298(C).
    9. Preeti Kumari Sahu & J. N. Roy & Chandan Chakraborty & Senthilarasu Sundaram, 2021. "A New Model for Estimation of Energy Extraction from Bifacial Photovoltaic Modules," Energies, MDPI, vol. 14(16), pages 1-16, August.
    10. Hooshmandzade, Niusha & Motevali, Ali & Reza Mousavi Seyedi, Seyed & Biparva, Pouria, 2021. "Influence of single and hybrid water-based nanofluids on performance of microgrid photovoltaic/thermal system," Applied Energy, Elsevier, vol. 304(C).
    11. Tian, Xinyi & Wang, Jun & Wang, Chuyao & Ji, Jie, 2023. "Comparison analysis of the glazed and unglazed curved water-based PV/T roofs in the non-heating season," Renewable Energy, Elsevier, vol. 205(C), pages 899-917.
    12. Zheng, Likai & Xuan, Yimin, 2021. "Performance estimation of a V-shaped perovskite/silicon tandem device: A case study based on a bifacial heterojunction silicon cell," Applied Energy, Elsevier, vol. 301(C).
    13. Tian, Xinyi & Wang, Jun & Ji, Jie & Wang, Chuyao & Ke, Wei & Yuan, Shuang, 2023. "A multifunctional curved CIGS photovoltaic/thermal roof system: A numerical and experimental investigation," Energy, Elsevier, vol. 273(C).
    14. Caixia Zhang & Honglie Shen & Hongzhi Liu, 2023. "The Influence of the Installation Condition and Performance of Bifacial Solar Modules on Energy Yield," Energies, MDPI, vol. 16(21), pages 1-17, November.
    15. Arias-Rosales, Andrés & LeDuc, Philip R., 2020. "Comparing View Factor modeling frameworks for the estimation of incident solar energy," Applied Energy, Elsevier, vol. 277(C).
    16. C.J., Ramanan & Lim, King Hann & Kurnia, Jundika Candra & Roy, Sukanta & Bora, Bhaskor Jyoti & Medhi, Bhaskar Jyoti, 2024. "Towards sustainable power generation: Recent advancements in floating photovoltaic technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 194(C).
    17. Muhammad Hanif Ainun Azhar & Salh Alhammadi & Seokjin Jang & Jitaek Kim & Jungtaek Kim & Woo Kyoung Kim, 2023. "Long-Term Field Observation of the Power Generation and System Temperature of a Roof-Integrated Photovoltaic System in South Korea," Sustainability, MDPI, vol. 15(12), pages 1-15, June.
    18. Gong, Quan & Lu, Lin & Chen, Jianheng, 2024. "Progress in radiative cooling materials for urban skin: Achievements in scalability, durability, color modulation, and intelligent thermal regulation," Renewable Energy, Elsevier, vol. 237(PB).
    19. Socrates Kaplanis & Eleni Kaplani & John K. Kaldellis, 2023. "PV Temperature Prediction Incorporating the Effect of Humidity and Cooling Due to Seawater Flow and Evaporation on Modules Simulating Floating PV Conditions," Energies, MDPI, vol. 16(12), pages 1-19, June.
    20. Basak, Achintya & Chakraborty, Suprava & Behura, Aruna Kumar, 2025. "Tilt angle optimization for bifacial PV module: Balancing direct and reflected irradiance on white painted ground surfaces," Applied Energy, Elsevier, vol. 377(PB).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:17:y:2024:i:23:p:5868-:d:1527323. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.