IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v17y2024i15p3704-d1443999.html
   My bibliography  Save this article

Photocatalytic Hydrogen Production Enhancement of NiTiO 3 Perovskite through Cobalt Incorporation

Author

Listed:
  • Alberto Bacilio Quispe Cohaila

    (Laboratorio de Generación y Almacenamiento de Hidrogeno, Facultad de Ingeniería, Escuela Profesional de Metalurgia y Materiales, Universidad Nacional Jorge Basadre Grohmann, Av. Miraflores s/n, Tacna 23003, Peru
    Grupo de Investigación GIMAECC, Facultad de Ingeniería, Universidad Nacional Jorge Basadre Grohmann, Ciudad Universitaria, Av. Miraflores s/n, Tacna 23003, Peru)

  • Elisban Juani Sacari Sacari

    (Grupo de Investigación GIMAECC, Facultad de Ingeniería, Universidad Nacional Jorge Basadre Grohmann, Ciudad Universitaria, Av. Miraflores s/n, Tacna 23003, Peru
    Facultad de Ciencias, Universidad Nacional de Ingeniería, Av. Túpac Amaru 210, Lima 15333, Peru
    Centro de Energías Renovables de Tacna (CERT), Facultad de Ciencias, Universidad Nacional Jorge Basadre Grohmann, Av. Miraflores s/n, Tacna 23003, Peru)

  • Wilson Orlando Lanchipa Ramos

    (Grupo de Investigación GIMAECC, Facultad de Ingeniería, Universidad Nacional Jorge Basadre Grohmann, Ciudad Universitaria, Av. Miraflores s/n, Tacna 23003, Peru
    Facultad de Ciencias Físicas, Universidad Nacional Mayor de San Marcos, Av. República de Venezuela s/n, Lima 15081, Peru)

  • Rocío María Tamayo Calderón

    (Centro de Microscopia Electrónica, Facultad de Ingeniería de Procesos, Universidad Nacional de San Agustín, Arequipa 04001, Peru)

  • Jesús Plácido Medina Salas

    (Grupo de Investigación GIMAECC, Facultad de Ingeniería, Universidad Nacional Jorge Basadre Grohmann, Ciudad Universitaria, Av. Miraflores s/n, Tacna 23003, Peru
    Laboratorio de Nanotecnología (NanoLab), Facultad de Ingeniería, Universidad Nacional Jorge Basadre Grohmann, Av. Miraflores s/n, Tacna 23003, Peru)

  • Francisco Gamarra Gómez

    (Grupo de Investigación GIMAECC, Facultad de Ingeniería, Universidad Nacional Jorge Basadre Grohmann, Ciudad Universitaria, Av. Miraflores s/n, Tacna 23003, Peru
    Laboratorio de Nanotecnología (NanoLab), Facultad de Ingeniería, Universidad Nacional Jorge Basadre Grohmann, Av. Miraflores s/n, Tacna 23003, Peru)

  • Ramalinga Viswanathan Mangalaraja

    (Facultad de Ingeniería y Ciencias, Universidad Adolfo Ibáñez, Diagonal las Torres 2640, Santiago 7940000, Chile
    Department of Mechanical Engineering, Faculty of Engineering, Karpagam Academy of Higher Education, Coimbatore 641021, India)

  • Saravanan Rajendran

    (Instituto de Alta Investigación, Universidad de Tarapacá, Arica 1000000, Chile)

Abstract

In this study, we synthesized pure and cobalt-doped NiTiO 3 perovskite nanostructures using a sol–gel method and characterized them to investigate the impact of cobalt incorporation on their photocatalytic hydrogen production under UV light. XRD analysis confirmed the formation of the hexagonal ilmenite structure, with lattice parameters increasing with cobalt doping, indicating the substitution of larger Co 2+ ions onto smaller Ni 2+ sites. Raman spectroscopy revealed a decrease in the intensity of active modes, suggesting crystal structure distortion and oxygen vacancy generation. UV-vis spectroscopy showed a decrease in bandgap energy from 2.24 to 2.16 eV with cobalt doping up to 5%, enhancing UV light absorption. SEM and TEM images revealed nanoparticle agglomeration, while cobalt doping did not significantly alter particle size up to 5% doping. Photoluminescence spectroscopy revealed an initial increase in PL intensity for NiTiO 3 -1%Co, followed by a systematic decrease with higher cobalt concentrations, with NiTiO 3 -10%Co exhibiting the lowest intensity. Photocatalytic experiments demonstrated a remarkable improvement in hydrogen evolution rate with increasing cobalt doping, with NiTiO 3 -10%Co exhibiting the highest rate of 940 μmol∙g −1 ·h −1 , a 60.4% increase compared to pure NiTiO 3 . This enhanced performance is attributed to the substitution of Co 2+ on Ni 2+ sites, the modification of electronic structure, the suppression of electron–hole recombination, and the creation of surface catalytic sites induced by cobalt incorporation. The proposed mechanism involves the introduction of Co 2+ /Co 3+ energy levels within the NiTiO 3 bandgap, facilitating charge separation and transfer, with the Co + /Co 2+ redox couple aiding in suppressing electron–hole recombination. These findings highlight the potential of cobalt doping to tune the properties of NiTiO 3 perovskite for efficient hydrogen production under UV light.

Suggested Citation

  • Alberto Bacilio Quispe Cohaila & Elisban Juani Sacari Sacari & Wilson Orlando Lanchipa Ramos & Rocío María Tamayo Calderón & Jesús Plácido Medina Salas & Francisco Gamarra Gómez & Ramalinga Viswanatha, 2024. "Photocatalytic Hydrogen Production Enhancement of NiTiO 3 Perovskite through Cobalt Incorporation," Energies, MDPI, vol. 17(15), pages 1-17, July.
  • Handle: RePEc:gam:jeners:v:17:y:2024:i:15:p:3704-:d:1443999
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/17/15/3704/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/17/15/3704/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Kazuhiko Maeda & Kentaro Teramura & Daling Lu & Tsuyoshi Takata & Nobuo Saito & Yasunobu Inoue & Kazunari Domen, 2006. "Photocatalyst releasing hydrogen from water," Nature, Nature, vol. 440(7082), pages 295-295, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tasleem, Sehar & Tahir, Muhammad, 2020. "Current trends in strategies to improve photocatalytic performance of perovskites materials for solar to hydrogen production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 132(C).
    2. Benali Rerbal & Tarik Ouahrani, 2021. "Enhancement of optoelectronic properties of layered MgIn $$_{2}$$ 2 Se $$_{4}$$ 4 compound under uniaxial strain, an ab initio study," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 94(9), pages 1-10, September.
    3. Zhishun Wei & Tharishinny Raja Mogan & Kunlei Wang & Marcin Janczarek & Ewa Kowalska, 2021. "Morphology-Governed Performance of Multi-Dimensional Photocatalysts for Hydrogen Generation," Energies, MDPI, vol. 14(21), pages 1-37, November.
    4. Ting He & Wenlong Zhen & Yongzhi Chen & Yuanyuan Guo & Zhuoer Li & Ning Huang & Zhongping Li & Ruoyang Liu & Yuan Liu & Xu Lian & Can Xue & Tze Chien Sum & Wei Chen & Donglin Jiang, 2023. "Integrated interfacial design of covalent organic framework photocatalysts to promote hydrogen evolution from water," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    5. Ail, Snehesh Shivananda & Dasappa, S., 2016. "Biomass to liquid transportation fuel via Fischer Tropsch synthesis – Technology review and current scenario," Renewable and Sustainable Energy Reviews, Elsevier, vol. 58(C), pages 267-286.
    6. Saraswat, Sushil Kumar & Rodene, Dylan D. & Gupta, Ram B., 2018. "Recent advancements in semiconductor materials for photoelectrochemical water splitting for hydrogen production using visible light," Renewable and Sustainable Energy Reviews, Elsevier, vol. 89(C), pages 228-248.
    7. Chen, Rong & Li, Lin & Zhu, Xun & Wang, Hong & Liao, Qiang & Zhang, Mu-Xing, 2015. "Highly-durable optofluidic microreactor for photocatalytic water splitting," Energy, Elsevier, vol. 83(C), pages 797-804.
    8. Hu, Yuchao & Mao, Liuhao & Guan, Xiangjiu & Tucker, Kevin Andrew & Xie, Huling & Wu, Xuesong & Shi, Jinwen, 2020. "Layered perovskite oxides and their derivative nanosheets adopting different modification strategies towards better photocatalytic performance of water splitting," Renewable and Sustainable Energy Reviews, Elsevier, vol. 119(C).
    9. Pan, Hui, 2016. "Principles on design and fabrication of nanomaterials as photocatalysts for water-splitting," Renewable and Sustainable Energy Reviews, Elsevier, vol. 57(C), pages 584-601.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:17:y:2024:i:15:p:3704-:d:1443999. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.