IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v15y2024i1d10.1038_s41467-024-53099-3.html
   My bibliography  Save this article

Exchange coupling states of cobalt complexes to control proton-coupled electron transfer

Author

Listed:
  • Jueun Lee

    (Gwangju Institute of Science and Technology
    Gwangju Institute of Science and Technology)

  • Junseong Lee

    (Chonnam National University)

  • Junhyeok Seo

    (Gwangju Institute of Science and Technology
    Gwangju Institute of Science and Technology)

Abstract

The electrochemical proton reactivity of transition metal complexes receives significant attentions. A thorough understanding of proton-coupled electron transfer (PCET) pathways is essential for elucidating the mechanism behind a proton reduction reaction, and controlling the pathway is a key focus in the field of the catalyst development. Spin interactions within complexes, which arise during electron transfer, can affect significantly the PCET pathway. Herein, we explore the phenomenon of spin rearrangement during the electrochemical reorganization of high-spin cobalt complexes. Our findings reveal that opposing spin interactions, induced by different coordination environments, can alter the PCET pathway. Finally, detailed analysis of the PCET pathway allows us to propose mechanisms for proton reduction in high-spin cobalt complexes.

Suggested Citation

  • Jueun Lee & Junseong Lee & Junhyeok Seo, 2024. "Exchange coupling states of cobalt complexes to control proton-coupled electron transfer," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
  • Handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-53099-3
    DOI: 10.1038/s41467-024-53099-3
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-024-53099-3
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-024-53099-3?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Cameron W. Kellett & Wesley B. Swords & Michael D. Turlington & Gerald J. Meyer & Curtis P. Berlinguette, 2018. "Resolving orbital pathways for intermolecular electron transfer," Nature Communications, Nature, vol. 9(1), pages 1-10, December.
    2. Sagnik Chakrabarti & Soumalya Sinha & Giang N. Tran & Hanah Na & Liviu M. Mirica, 2023. "Characterization of paramagnetic states in an organometallic nickel hydrogen evolution electrocatalyst," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    3. Peng Zhou & Ishtiaque Ahmed Navid & Yongjin Ma & Yixin Xiao & Ping Wang & Zhengwei Ye & Baowen Zhou & Kai Sun & Zetian Mi, 2023. "Solar-to-hydrogen efficiency of more than 9% in photocatalytic water splitting," Nature, Nature, vol. 613(7942), pages 66-70, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Guo, Liping & Gao, Jinyu & Huang, Qi & Wang, Xuepeng & Li, Zhenzi & Li, Mingxia & Zhou, Wei, 2024. "Element engineering in graphitic carbon nitride photocatalysts," Renewable and Sustainable Energy Reviews, Elsevier, vol. 199(C).
    2. Wang, Yangyang & Liu, Yangyang & Xu, Zaifeng & Yin, Kexin & Zhou, Yaru & Zhang, Jifu & Cui, Peizhe & Ma, Shinan & Wang, Yinglong & Zhu, Zhaoyou, 2024. "A review on renewable energy-based chemical engineering design and optimization," Renewable and Sustainable Energy Reviews, Elsevier, vol. 189(PB).
    3. Xin Liu & Danhao Wang & Wei Chen & Yang Kang & Shi Fang & Yuanmin Luo & Dongyang Luo & Huabin Yu & Haochen Zhang & Kun Liang & Lan Fu & Boon S. Ooi & Sheng Liu & Haiding Sun, 2024. "Optoelectronic synapses with chemical-electric behaviors in gallium nitride semiconductors for biorealistic neuromorphic functionality," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    4. Tang, Junying & Zhao, Tianshuo & He, Yulian & Guo, Ruitang & Pan, Weiguo & Zhang, Hua & Dou, Binlin, 2024. "Amorphous cobalt boride exploring as the first first-row transition-metal-based metallic photocatalyst for efficient water splitting over 800 nm," Renewable Energy, Elsevier, vol. 222(C).
    5. Xu Xin & Yuke Li & Youzi Zhang & Yijin Wang & Xiao Chi & Yanping Wei & Caozheng Diao & Jie Su & Ruiling Wang & Peng Guo & Jiakang Yu & Jia Zhang & Ana Jorge Sobrido & Maria-Magdalena Titirici & Xuanhu, 2024. "Large electronegativity differences between adjacent atomic sites activate and stabilize ZnIn2S4 for efficient photocatalytic overall water splitting," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    6. Xia, Qi & Zhao, Jianguo & Chen, Chen & Jin, Weiya, 2023. "Modeling of CO2/H2O Co-electrolysis using solar-driven SOEC coupled with ammonia-based chemical heat pump," Renewable Energy, Elsevier, vol. 212(C), pages 128-137.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-53099-3. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.