IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v17y2024i22p5751-d1523178.html
   My bibliography  Save this article

Investigation on Hydrodynamic Performance and Wall Temperature of Water-Cooled Wall in 1000 MW Boiler Under Low-Load Conditions

Author

Listed:
  • Peian Chong

    (Shanghai Power Equipment Research Institute Co., Ltd., Shanghai 200240, China)

  • Xiaolei Zhu

    (Shanghai Power Equipment Research Institute Co., Ltd., Shanghai 200240, China)

  • Jianning Li

    (Shanghai Power Equipment Research Institute Co., Ltd., Shanghai 200240, China)

  • Xiao Li

    (State Key Laboratory of Multiphase Flow in Power Engineering, School of Energy and Power Engineering, Xi’an Jiaotong University, Xi’an 710049, China)

  • Lei Deng

    (State Key Laboratory of Multiphase Flow in Power Engineering, School of Energy and Power Engineering, Xi’an Jiaotong University, Xi’an 710049, China)

Abstract

To enhance the peak-shaving capability of a boiler, a mathematical model of hydrodynamic and wall temperature characteristics for the water-cooled wall of a 1000 MW boiler was established. Utilizing the component pressure method, the mass flow distribution, outlet working fluid temperature, pressure loss, and wall temperature distribution characteristics of the water-cooled walls at 30% of the boiler’s maximum continuous rating (BMCR) were calculated and analyzed. The findings suggest that, under the operation at 30% BMCR load, there is a substantial equilibrium in the flow distribution across the quartet of walls that constitute the water-cooled wall assembly. The maximum mass flow rate deviations in the helical and vertical sections are 1.95% and 3.47%, respectively, showing small flow deviations and reasonable distribution. The temperature deviation in the helical section is 0.3 °C, reflecting the characteristic low thermal deviation in helical tubes. While the temperature deviation at the outlet of the vertical section is higher, it remains within safe limits. The pressure loss across the water-cooled wall system amounts to 0.4 MPa. The peak wall temperature reaches 337.5 °C, remaining within the material’s permissible safety limits. Through an in-depth performance analysis, the hydrodynamic operational safety under 30% BMCR deep peak-shaving load is ensured.

Suggested Citation

  • Peian Chong & Xiaolei Zhu & Jianning Li & Xiao Li & Lei Deng, 2024. "Investigation on Hydrodynamic Performance and Wall Temperature of Water-Cooled Wall in 1000 MW Boiler Under Low-Load Conditions," Energies, MDPI, vol. 17(22), pages 1-17, November.
  • Handle: RePEc:gam:jeners:v:17:y:2024:i:22:p:5751-:d:1523178
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/17/22/5751/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/17/22/5751/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Xin Guo & Liangwei Xia & Guangbo Zhao & Guohua Wei & Yongjie Wang & Yaning Yin & Jianming Guo & Xiaohan Ren, 2022. "Steam Temperature Characteristics in Boiler Water Wall Tubes Based on Furnace CFD and Hydrodynamic Coupling Model," Energies, MDPI, vol. 15(13), pages 1-28, June.
    2. Ma, Dafu & Zhang, Shouyu & He, Xiang & Ding, Xian & Li, Wangfan & Liu, Pingyuan, 2024. "Combustion stability and NOx emission characteristics of three combustion modes of pulverized coal boilers under low or ultra-low loads," Applied Energy, Elsevier, vol. 353(PA).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Alexander I. Balitskii & Vitaly V. Dmytryk & Lyubomir M. Ivaskevich & Olexiy A. Balitskii & Alyona V. Glushko & Lev B. Medovar & Karol F. Abramek & Ganna P. Stovpchenko & Jacek J. Eliasz & Marcin A. K, 2022. "Improvement of the Mechanical Characteristics, Hydrogen Crack Resistance and Durability of Turbine Rotor Steels Welded Joints," Energies, MDPI, vol. 15(16), pages 1-23, August.
    2. Xin Guo & Guangbo Zhao & Zhecheng Zhang & Dongdong Feng & Yongjie Wang & Zhengshun Zhang, 2023. "A Real-Time Calculation Method to Improve Boiler Safety in Deep Peak Shaving Cases," Energies, MDPI, vol. 16(13), pages 1-19, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:17:y:2024:i:22:p:5751-:d:1523178. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.