IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v17y2024i22p5635-d1518355.html
   My bibliography  Save this article

A LiDAR-Based Active Yaw Control Strategy for Optimal Wake Steering in Paired Wind Turbines

Author

Listed:
  • Esmail Mahmoodi

    (Department of Mechanical Engineering of Biosystems, Shahrood University of Technology, Shahrood 3619995161, Iran
    Center for International Scientific Studies and Collaborations, Ministry of Science, Research and Technology, Tehran 158757788, Iran)

  • Mohammad Khezri

    (Department of Mechanical Engineering, Ferdowsi University of Mashhad, Mashhad 9177948974, Iran)

  • Arash Ebrahimi

    (Institute of Wind Energy Technology, Faculty of Mechanical Engineering and Marine Technologies, University of Rostock, 18051 Rostock, Germany
    IWEN Energy Institute, 18119 Rostock, Germany)

  • Uwe Ritschel

    (Institute of Wind Energy Technology, Faculty of Mechanical Engineering and Marine Technologies, University of Rostock, 18051 Rostock, Germany
    IWEN Energy Institute, 18119 Rostock, Germany)

  • Majid Kamandi

    (Department of Mechanical Engineering of Biosystems, University of Tehran, Karaj 7787131587, Iran)

Abstract

In this study, we investigate a yaw control strategy in a two-turbine wind farm with 3.5 MW turbines, aiming to optimize power management. The wind farm is equipped with a nacelle-mounted multi-plane LiDAR system for wind speed measurements. Using an analytical model and integrating LiDAR and SCADA data, we estimate wake effects and power output. Our results show a 2% power gain achieved through optimal yaw control over a year-long assessment. The wind predominantly blows from the southwest, perpendicular to the turbine alignment. The optimal yaw and power gain depend on wind conditions, with higher turbulence intensity and wind speed leading to reduced gains. The power gain follows a bell curve across the range of wind inflow angles, peaking at 1.7% with a corresponding optimal yaw of 17 degrees at an inflow angle of 12 degrees. Further experiments are recommended to refine the estimates and enhance the performance of wind farms through optimized yaw control strategies, ultimately contributing to the advancement of sustainable energy generation.

Suggested Citation

  • Esmail Mahmoodi & Mohammad Khezri & Arash Ebrahimi & Uwe Ritschel & Majid Kamandi, 2024. "A LiDAR-Based Active Yaw Control Strategy for Optimal Wake Steering in Paired Wind Turbines," Energies, MDPI, vol. 17(22), pages 1-14, November.
  • Handle: RePEc:gam:jeners:v:17:y:2024:i:22:p:5635-:d:1518355
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/17/22/5635/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/17/22/5635/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Song, Dongran & Fan, Xinyu & Yang, Jian & Liu, Anfeng & Chen, Sifan & Joo, Young Hoon, 2018. "Power extraction efficiency optimization of horizontal-axis wind turbines through optimizing control parameters of yaw control systems using an intelligent method," Applied Energy, Elsevier, vol. 224(C), pages 267-279.
    2. Mou Lin & Fernando Porté-Agel, 2023. "Power Production and Blade Fatigue of a Wind Turbine Array Subjected to Active Yaw Control," Energies, MDPI, vol. 16(6), pages 1-17, March.
    3. Michael F. Howland & Jesús Bas Quesada & Juan José Pena Martínez & Felipe Palou Larrañaga & Neeraj Yadav & Jasvipul S. Chawla & Varun Sivaram & John O. Dabiri, 2022. "Collective wind farm operation based on a predictive model increases utility-scale energy production," Nature Energy, Nature, vol. 7(9), pages 818-827, September.
    4. Esmail Mahmoodi & Mohammad Khezri & Arash Ebrahimi & Uwe Ritschel & Leonardo P. Chamorro & Ali Khanjari, 2023. "A Simple Model for Wake-Induced Aerodynamic Interaction of Wind Turbines," Energies, MDPI, vol. 16(15), pages 1-13, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. He, Ruiyang & Yang, Hongxing & Lu, Lin & Gao, Xiaoxia, 2024. "Site-specific wake steering strategy for combined power enhancement and fatigue mitigation within wind farms," Renewable Energy, Elsevier, vol. 225(C).
    2. Kumarasamy Palanimuthu & Ganesh Mayilsamy & Ameerkhan Abdul Basheer & Seong-Ryong Lee & Dongran Song & Young Hoon Joo, 2022. "A Review of Recent Aerodynamic Power Extraction Challenges in Coordinated Pitch, Yaw, and Torque Control of Large-Scale Wind Turbine Systems," Energies, MDPI, vol. 15(21), pages 1-27, November.
    3. Haolan Liang & Zhangjie Liu & Hua Liu, 2019. "Stabilization Method Considering Disturbance Mitigation for DC Microgrids with Constant Power Loads," Energies, MDPI, vol. 12(5), pages 1-19, March.
    4. Cheng, Yi & Azizipanah-Abarghooee, Rasoul & Azizi, Sadegh & Ding, Lei & Terzija, Vladimir, 2020. "Smart frequency control in low inertia energy systems based on frequency response techniques: A review," Applied Energy, Elsevier, vol. 279(C).
    5. Zhang, Chaoyu & Zhang, Chengming & Li, Liyi & Guo, Qingbo, 2021. "Parameter analysis of power system for solar-powered unmanned aerial vehicle," Applied Energy, Elsevier, vol. 295(C).
    6. Cao, Yankai & Zavala, Victor M. & D’Amato, Fernando, 2018. "Using stochastic programming and statistical extrapolation to mitigate long-term extreme loads in wind turbines," Applied Energy, Elsevier, vol. 230(C), pages 1230-1241.
    7. Yao Liu & Lin Guan & Fang Guo & Jianping Zheng & Jianfu Chen & Chao Liu & Josep M. Guerrero, 2019. "A Reactive Power-Voltage Control Strategy of an AC Microgrid Based on Adaptive Virtual Impedance," Energies, MDPI, vol. 12(16), pages 1-15, August.
    8. Jaime Liew & Kirby S. Heck & Michael F. Howland, 2024. "Unified momentum model for rotor aerodynamics across operating regimes," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    9. Pryor, Sara C. & Barthelmie, Rebecca J., 2024. "Wind shadows impact planning of large offshore wind farms," Applied Energy, Elsevier, vol. 359(C).
    10. Shin, Heesoo & Rüttgers, Mario & Lee, Sangseung, 2023. "Effects of spatiotemporal correlations in wind data on neural network-based wind predictions," Energy, Elsevier, vol. 279(C).
    11. Jun Liu & Feihang Zhou & Chencong Zhao & Zhuoran Wang, 2019. "A PI-Type Sliding Mode Controller Design for PMSG-Based Wind Turbine," Complexity, Hindawi, vol. 2019, pages 1-12, June.
    12. Yildiz, Anil & Mern, John & Kochenderfer, Mykel J. & Howland, Michael F., 2023. "Towards sequential sensor placements on a wind farm to maximize lifetime energy and profit," Renewable Energy, Elsevier, vol. 216(C).
    13. Rivera-Arreba, Irene & Li, Zhaobin & Yang, Xiaolei & Bachynski-Polić, Erin E., 2024. "Comparison of the dynamic wake meandering model against large eddy simulation for horizontal and vertical steering of wind turbine wakes," Renewable Energy, Elsevier, vol. 221(C).
    14. Jing, Bo & Qian, Zheng & Pei, Yan & Zhang, Lizhong & Yang, Tingyi, 2020. "Improving wind turbine efficiency through detection and calibration of yaw misalignment," Renewable Energy, Elsevier, vol. 160(C), pages 1217-1227.
    15. Lin, Zhongwei & Chen, Zhenyu & Liu, Jizhen & Wu, Qiuwei, 2019. "Coordinated mechanical loads and power optimization of wind energy conversion systems with variable-weight model predictive control strategy," Applied Energy, Elsevier, vol. 236(C), pages 307-317.
    16. Al-Nassar, W.K. & Neelamani, S. & Al-Salem, K.A. & Al-Dashti, H.A., 2019. "Feasibility of offshore wind energy as an alternative source for the state of Kuwait," Energy, Elsevier, vol. 169(C), pages 783-796.
    17. Lin, Zi & Liu, Xiaolei, 2020. "Wind power forecasting of an offshore wind turbine based on high-frequency SCADA data and deep learning neural network," Energy, Elsevier, vol. 201(C).
    18. Huanqiang, Zhang & Xiaoxia, Gao & Hongkun, Lu & Qiansheng, Zhao & Xiaoxun, Zhu & Yu, Wang & Fei, Zhao, 2024. "Investigation of a new 3D wake model of offshore floating wind turbines subjected to the coupling effects of wind and wave," Applied Energy, Elsevier, vol. 365(C).
    19. Amira Elkodama & Amr Ismaiel & A. Abdellatif & S. Shaaban & Shigeo Yoshida & Mostafa A. Rushdi, 2023. "Control Methods for Horizontal Axis Wind Turbines (HAWT): State-of-the-Art Review," Energies, MDPI, vol. 16(17), pages 1-32, September.
    20. Esmail Mahmoodi & Mohammad Khezri & Arash Ebrahimi & Uwe Ritschel & Leonardo P. Chamorro & Ali Khanjari, 2023. "A Simple Model for Wake-Induced Aerodynamic Interaction of Wind Turbines," Energies, MDPI, vol. 16(15), pages 1-13, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:17:y:2024:i:22:p:5635-:d:1518355. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.