IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v17y2024i22p5607-d1517470.html
   My bibliography  Save this article

Performance Predictions of Solar-Assisted Heat Pumps: Methodological Approach and Comparison Between Various Artificial Intelligence Methods

Author

Listed:
  • Minghui Ma

    (Department of Industrial Engineering DIN, Alma Mater Studiorum—University of Bologna, Viale Risorgimento 2, 40136 Bologna, Italy)

  • Oguzhan Pektezel

    (Department of Mechanical Engineering, University of Tokat Gaziosmanpasa, Tokat 60250, Turkey)

  • Vincenzo Ballerini

    (Department of Industrial Engineering DIN, Alma Mater Studiorum—University of Bologna, Viale Risorgimento 2, 40136 Bologna, Italy)

  • Paolo Valdiserri

    (Department of Industrial Engineering DIN, Alma Mater Studiorum—University of Bologna, Viale Risorgimento 2, 40136 Bologna, Italy)

  • Eugenia Rossi di Schio

    (Department of Industrial Engineering DIN, Alma Mater Studiorum—University of Bologna, Viale Risorgimento 2, 40136 Bologna, Italy)

Abstract

The coefficient of performance (COP) is a crucial metric for evaluating the efficiency of heat pump systems. Real-time monitoring of heat pump system performance necessitates continuously collecting and processing data from various components utilizing multiple sensors and controllers. This process is inherently complex and presents significant challenges. In recent years, artificial intelligence (AI) models have increasingly been applied in refrigeration, heat pump, and air conditioning systems due to their capability to identify and analyze complex patterns and data relationships, demonstrating higher accuracy and reduced computation time. In this study, multilayer perceptron (MLP), support vector machines (SVM), and random forest (RF) are used to develop COP prediction models for solar-assisted heat pumps. By comparing the predictive accuracy and modeling time of the three models built, the results demonstrate that the random forest model achieves the best prediction performance, with a mean absolute error (MAE) of 2.42% and a root mean squared error (RMSE) of 4.01% on the train set. On the test set, the MAE was 2.35% and the RMSE was 3.84%. The modeling time for the RF model was 6.57 s.

Suggested Citation

  • Minghui Ma & Oguzhan Pektezel & Vincenzo Ballerini & Paolo Valdiserri & Eugenia Rossi di Schio, 2024. "Performance Predictions of Solar-Assisted Heat Pumps: Methodological Approach and Comparison Between Various Artificial Intelligence Methods," Energies, MDPI, vol. 17(22), pages 1-16, November.
  • Handle: RePEc:gam:jeners:v:17:y:2024:i:22:p:5607-:d:1517470
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/17/22/5607/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/17/22/5607/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Vincenzo Ballerini & Bernadetta Lubowicka & Paolo Valdiserri & Dorota Anna Krawczyk & Beata Sadowska & Maciej Kłopotowski & Eugenia Rossi di Schio, 2023. "The Energy Retrofit Impact in Public Buildings: A Numerical Cross-Check Supported by Real Consumption Data," Energies, MDPI, vol. 16(23), pages 1-21, November.
    2. Angelidis, O. & Ioannou, A. & Friedrich, D. & Thomson, A. & Falcone, G., 2023. "District heating and cooling networks with decentralised energy substations: Opportunities and barriers for holistic energy system decarbonisation," Energy, Elsevier, vol. 269(C).
    3. Guo, Yabin & Wang, Jiangyu & Chen, Huanxin & Li, Guannan & Liu, Jiangyan & Xu, Chengliang & Huang, Ronggeng & Huang, Yao, 2018. "Machine learning-based thermal response time ahead energy demand prediction for building heating systems," Applied Energy, Elsevier, vol. 221(C), pages 16-27.
    4. Maranghi, Florian & Gosselin, Louis & Raymond, Jasmin & Bourbonnais, Martin, 2023. "Modeling of solar-assisted ground-coupled heat pumps with or without batteries in remote high north communities," Renewable Energy, Elsevier, vol. 207(C), pages 484-498.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Amal A. Al-Shargabi & Abdulbasit Almhafdy & Dina M. Ibrahim & Manal Alghieth & Francisco Chiclana, 2021. "Tuning Deep Neural Networks for Predicting Energy Consumption in Arid Climate Based on Buildings Characteristics," Sustainability, MDPI, vol. 13(22), pages 1-20, November.
    2. Gautham Krishnadas & Aristides Kiprakis, 2020. "A Machine Learning Pipeline for Demand Response Capacity Scheduling," Energies, MDPI, vol. 13(7), pages 1-25, April.
    3. Cocco Mariani, Viviana & Hennings Och, Stephan & dos Santos Coelho, Leandro & Domingues, Eric, 2019. "Pressure prediction of a spark ignition single cylinder engine using optimized extreme learning machine models," Applied Energy, Elsevier, vol. 249(C), pages 204-221.
    4. Sun, Chunhua & Liu, Yiting & Cao, Shanshan & Chen, Jiali & Xia, Guoqiang & Wu, Xiangdong, 2022. "Identification of control regularity of heating stations based on cross-correlation function dynamic time delay method," Energy, Elsevier, vol. 246(C).
    5. Afroz, Zakia & Urmee, Tania & Shafiullah, G.M. & Higgins, Gary, 2018. "Real-time prediction model for indoor temperature in a commercial building," Applied Energy, Elsevier, vol. 231(C), pages 29-53.
    6. Thomas Wu & Bo Wang & Dongdong Zhang & Ziwei Zhao & Hongyu Zhu, 2023. "Benchmarking Evaluation of Building Energy Consumption Based on Data Mining," Sustainability, MDPI, vol. 15(6), pages 1-16, March.
    7. Zhao, Haitao & Ezeh, Collins I. & Ren, Weijia & Li, Wentao & Pang, Cheng Heng & Zheng, Chenghang & Gao, Xiang & Wu, Tao, 2019. "Integration of machine learning approaches for accelerated discovery of transition-metal dichalcogenides as Hg0 sensing materials," Applied Energy, Elsevier, vol. 254(C).
    8. Löhr, Yannik & Wolf, Daniel & Pollerberg, Clemens & Hörsting, Alexander & Mönnigmann, Martin, 2021. "Supervisory model predictive control for combined electrical and thermal supply with multiple sources and storages," Applied Energy, Elsevier, vol. 290(C).
    9. Li, Xinyue & Chen, Shuqin & Li, Hongliang & Lou, Yunxiao & Li, Jiahe, 2023. "A behavior-orientated prediction method for short-term energy consumption of air-conditioning systems in buildings blocks," Energy, Elsevier, vol. 263(PD).
    10. El-Baz, Wessam & Tzscheutschler, Peter & Wagner, Ulrich, 2019. "Integration of energy markets in microgrids: A double-sided auction with device-oriented bidding strategies," Applied Energy, Elsevier, vol. 241(C), pages 625-639.
    11. Nielsen, Steffen & Østergaard, Poul Alberg & Sperling, Karl, 2023. "Renewable energy transition, transmission system impacts and regional development – a mismatch between national planning and local development," Energy, Elsevier, vol. 278(PA).
    12. Zhang, Chengyu & Ma, Liangdong & Han, Xing & Zhao, Tianyi, 2024. "Reconstituted data-driven air conditioning energy consumption prediction system employing occupant-orientated probability model as input and swarm intelligence optimization algorithms," Energy, Elsevier, vol. 288(C).
    13. Kuntuarova, Saltanat & Licklederer, Thomas & Huynh, Thanh & Zinsmeister, Daniel & Hamacher, Thomas & Perić, Vedran, 2024. "Design and simulation of district heating networks: A review of modeling approaches and tools," Energy, Elsevier, vol. 305(C).
    14. Hamza Mubarak & Mohammad J. Sanjari & Sascha Stegen & Abdallah Abdellatif, 2023. "Improved Active and Reactive Energy Forecasting Using a Stacking Ensemble Approach: Steel Industry Case Study," Energies, MDPI, vol. 16(21), pages 1-32, October.
    15. Zihao Li & Daniel Friedrich & Gareth P. Harrison, 2020. "Demand Forecasting for a Mixed-Use Building Using Agent-Schedule Information with a Data-Driven Model," Energies, MDPI, vol. 13(4), pages 1-20, February.
    16. Yao, Shuai & Wu, Jianzhong & Qadrdan, Meysam, 2024. "A state-of-the-art analysis and perspectives on the 4th/5th generation district heating and cooling systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 202(C).
    17. Razak Olu-Ajayi & Hafiz Alaka & Hakeem Owolabi & Lukman Akanbi & Sikiru Ganiyu, 2023. "Data-Driven Tools for Building Energy Consumption Prediction: A Review," Energies, MDPI, vol. 16(6), pages 1-20, March.
    18. Wang, Yongjie & Zhan, Changhong & Li, Guanghao & Ren, Shaochen, 2024. "Comparison of algorithms for heat load prediction of buildings," Energy, Elsevier, vol. 297(C).
    19. Groppi, Daniele & Feijoo, Felipe & Pfeifer, Antun & Garcia, Davide Astiaso & Duic, Neven, 2023. "Analyzing the impact of demand response and reserves in islands energy planning," Energy, Elsevier, vol. 278(C).
    20. Wirich Freppel & Geoffrey Promis & Anh Dung Tran Le & Omar Douzane & Thierry Langlet, 2022. "Development of a Novel Experimental Facility to Assess Heating Systems’ Behaviour in Buildings," Energies, MDPI, vol. 15(13), pages 1-22, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:17:y:2024:i:22:p:5607-:d:1517470. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.