IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v221y2024ics0960148123016233.html
   My bibliography  Save this article

Energy analysis of multi-source heat pump system: A real case study application

Author

Listed:
  • Emmi, Giuseppe
  • Baccega, Eleonora
  • Cesari, Silvia
  • Mainardi, Elena
  • Bottarelli, Michele

Abstract

In the last years the HVAC sector has seen the growing interest in using the so-called multi-source heat pump systems. This type of plant aims to improve the energy performance of the heat pump. As widely known the heat pump represents the most promise solution in terms of potential for exploitation of renewable energies. The sun and air can be used as alternative sources to the ground during the middle season or when they are available and convenient, while the ground could be used during the peak periods of the seasons keeping good energy performances of the system. The present work summarizes the monitoring results of a large-scale experimental plant used for the air conditioning of a 100 m2 snack bar in Ferrara, Italy. The energy behaviour of the plant has been monitored for one year and its performance has been compared with the existing plant. The results have proved an energy saving between 20 % and 70 % in cooling mode. In heating the proposed plant is less competitive due to the share of renewable energy considered in the existing heating system. The work shows how these systems are potentially suitable for the electrification and decarbonisation process in the building sector.

Suggested Citation

  • Emmi, Giuseppe & Baccega, Eleonora & Cesari, Silvia & Mainardi, Elena & Bottarelli, Michele, 2024. "Energy analysis of multi-source heat pump system: A real case study application," Renewable Energy, Elsevier, vol. 221(C).
  • Handle: RePEc:eee:renene:v:221:y:2024:i:c:s0960148123016233
    DOI: 10.1016/j.renene.2023.119708
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148123016233
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2023.119708?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Bottarelli, Michele & Baccega, Eleonora & Cesari, Silvia & Emmi, Giuseppe, 2022. "Role of phase change materials in backfilling of flat-panels ground heat exchanger," Renewable Energy, Elsevier, vol. 189(C), pages 1324-1336.
    2. PELELLA, Francesco & ZSEMBINSZKI, Gabriel & VISCITO, Luca & William MAURO, Alfonso & CABEZA, Luisa F., 2023. "Thermo-economic optimization of a multi-source (air/sun/ground) residential heat pump with a water/PCM thermal storage," Applied Energy, Elsevier, vol. 331(C).
    3. Chen, Yuzhu & Hua, Huilian & Wang, Jun & Lund, Peter D., 2021. "Integrated performance analysis of a space heating system assisted by photovoltaic/thermal collectors and ground source heat pump for hotel and office building types," Renewable Energy, Elsevier, vol. 169(C), pages 925-934.
    4. Bottarelli, M. & Bortoloni, M. & Su, Y., 2019. "On the sizing of a novel Flat-Panel ground heat exchanger in coupling with a dual-source heat pump," Renewable Energy, Elsevier, vol. 142(C), pages 552-560.
    5. Cai, Jingyong & Ji, Jie & Wang, Yunyun & Huang, Wenzhu, 2016. "Numerical simulation and experimental validation of indirect expansion solar-assisted multi-functional heat pump," Renewable Energy, Elsevier, vol. 93(C), pages 280-290.
    6. Emmi, Giuseppe & Bottarelli, Michele, 2023. "Enhancement of shallow ground heat exchanger with phase change material," Renewable Energy, Elsevier, vol. 206(C), pages 828-837.
    7. Besagni, Giorgio & Croci, Lorenzo & Nesa, Riccardo & Molinaroli, Luca, 2019. "Field study of a novel solar-assisted dual-source multifunctional heat pump," Renewable Energy, Elsevier, vol. 132(C), pages 1185-1215.
    8. Cruz-Peragón, F. & Gómez-de la Cruz, F.J. & Palomar-Carnicero, J.M. & López-García, R., 2022. "Optimal design of a hybrid ground source heat pump for an official building with thermal load imbalance and limited space for the ground heat exchanger," Renewable Energy, Elsevier, vol. 195(C), pages 381-394.
    9. Maranghi, Florian & Gosselin, Louis & Raymond, Jasmin & Bourbonnais, Martin, 2023. "Modeling of solar-assisted ground-coupled heat pumps with or without batteries in remote high north communities," Renewable Energy, Elsevier, vol. 207(C), pages 484-498.
    10. Vivian, Jacopo & Emmi, Giuseppe & Zarrella, Angelo & Jobard, Xavier & Pietruschka, Dirk & De Carli, Michele, 2018. "Evaluating the cost of heat for end users in ultra low temperature district heating networks with booster heat pumps," Energy, Elsevier, vol. 153(C), pages 788-800.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zendehboudi, Alireza, 2024. "Optimal discharge pressure and performance characteristics of a transcritical CO2 heat pump system with a tri-partite gas cooler for combined space and water heating," Renewable Energy, Elsevier, vol. 226(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wang, Yubo & Quan, Zhenhua & Zhao, Yaohua & Wang, Lincheng & Bai, Ze & Shi, Junzhang, 2024. "Energy and exergy analysis of a novel dual-source heat pump system with integrated phase change energy storage," Renewable Energy, Elsevier, vol. 222(C).
    2. Obalanlege, Mustapha A. & Mahmoudi, Yasser & Douglas, Roy & Bailie, David & Davidson, John, 2020. "Experimental assessment of short cycling in a hybrid photovoltaic-thermal heat pump system," Applied Energy, Elsevier, vol. 268(C).
    3. Choi, Hwi-Ung & Choi, Kwang-Hwan, 2023. "Numerical study on the performance of a solar-assisted heat pump coupled with a photovoltaic-thermal air heater," Energy, Elsevier, vol. 285(C).
    4. Boahen, Samuel & Anka, Selorm Kwaku & Lee, Kwang Ho & Choi, Jong Min, 2021. "Performance analysis of cascade multi-functional heat pump in summer season," Renewable Energy, Elsevier, vol. 163(C), pages 1001-1011.
    5. Cao, Jingyu & Zheng, Ling & Peng, Jinqing & Wang, Wenjie & Leung, Michael K.H. & Zheng, Zhanying & Hu, Mingke & Wang, Qiliang & Cai, Jingyong & Pei, Gang & Ji, Jie, 2023. "Advances in coupled use of renewable energy sources for performance enhancement of vapour compression heat pump: A systematic review of applications to buildings," Applied Energy, Elsevier, vol. 332(C).
    6. Wang, Xinru & Xia, Liang & Bales, Chris & Zhang, Xingxing & Copertaro, Benedetta & Pan, Song & Wu, Jinshun, 2020. "A systematic review of recent air source heat pump (ASHP) systems assisted by solar thermal, photovoltaic and photovoltaic/thermal sources," Renewable Energy, Elsevier, vol. 146(C), pages 2472-2487.
    7. Emmi, Giuseppe & Bottarelli, Michele, 2023. "Enhancement of shallow ground heat exchanger with phase change material," Renewable Energy, Elsevier, vol. 206(C), pages 828-837.
    8. Song, Zhiying & Ji, Jie & Cai, Jingyong & Zhao, Bin & Li, Zhaomeng, 2021. "Investigation on a direct-expansion solar-assisted heat pump with a novel hybrid compound parabolic concentrator/photovoltaic/fin evaporator," Applied Energy, Elsevier, vol. 299(C).
    9. Song, Zhiying & Ji, Jie & Zhang, Yuzhe & Cai, Jingyong & Li, Zhaomeng & Li, Yunhai, 2023. "Mathematical and experimental investigation about the dual-source heat pump integrating low concentrated photovoltaic and finned-tube exchanger," Energy, Elsevier, vol. 263(PE).
    10. Kazemian, Arash & Khatibi, Meysam & Ma, Tao & Peng, Jinqing & Hongxing, Yang, 2023. "A thermal performance-enhancing strategy of photovoltaic thermal systems by applying surface area partially covered by solar cells," Applied Energy, Elsevier, vol. 329(C).
    11. Han, Kedong & Ji, Jie & Cai, Jingyong & Gao, Yuhe & Zhang, Feng & Uddin, Md Muin & Song, Zhiying, 2021. "Experimental and numerical investigation on a novel photovoltaic direct-driven ice storage air-conditioning system," Renewable Energy, Elsevier, vol. 172(C), pages 514-528.
    12. Lee, Seung Joo & Shon, Byung Hoon & Jung, Chung Woo & Kang, Yong Tae, 2018. "A novel type solar assisted heat pump using a low GWP refrigerant (R-1233zd(E)) with the flexible solar collector," Energy, Elsevier, vol. 149(C), pages 386-396.
    13. Mohanraj, M. & Belyayev, Ye. & Jayaraj, S. & Kaltayev, A., 2018. "Research and developments on solar assisted compression heat pump systems – A comprehensive review (Part A: Modeling and modifications)," Renewable and Sustainable Energy Reviews, Elsevier, vol. 83(C), pages 90-123.
    14. Chicherin, Stanislav, 2020. "Methodology for analyzing operation data for optimum district heating (DH) system design: Ten-year data of Omsk, Russia," Energy, Elsevier, vol. 211(C).
    15. Cai, Jingyong & Ji, Jie & Wang, Yunyun & Huang, Wenzhu, 2017. "Operation characteristics of a novel dual source multi-functional heat pump system under various working modes," Applied Energy, Elsevier, vol. 194(C), pages 236-246.
    16. Aljundi, K. & Figueiredo, A. & Vieira, A. & Lapa, J. & Cardoso, R., 2024. "Geothermal energy system application: From basic standard performance to sustainability reflection," Renewable Energy, Elsevier, vol. 220(C).
    17. Lu, Shixiang & Zhang, Jili & Liang, Ruobing & Zhou, Chao, 2020. "Refrigeration characteristics of a hybrid heat dissipation photovoltaic-thermal heat pump under various ambient conditions on summer night," Renewable Energy, Elsevier, vol. 146(C), pages 2524-2534.
    18. Meesenburg, Wiebke & Ommen, Torben & Thorsen, Jan Eric & Elmegaard, Brian, 2020. "Economic feasibility of ultra-low temperature district heating systems in newly built areas supplied by renewable energy," Energy, Elsevier, vol. 191(C).
    19. Danica Djurić Ilić, 2020. "Classification of Measures for Dealing with District Heating Load Variations—A Systematic Review," Energies, MDPI, vol. 14(1), pages 1-27, December.
    20. Lund, Henrik & Østergaard, Poul Alberg & Nielsen, Tore Bach & Werner, Sven & Thorsen, Jan Eric & Gudmundsson, Oddgeir & Arabkoohsar, Ahmad & Mathiesen, Brian Vad, 2021. "Perspectives on fourth and fifth generation district heating," Energy, Elsevier, vol. 227(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:221:y:2024:i:c:s0960148123016233. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.