IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v17y2024i22p5566-d1515980.html
   My bibliography  Save this article

Optimization of an Organic Rankine Cycle–Vapor Compression Cycle System for Electricity and Cooling Production from Low-Grade Waste Heat

Author

Listed:
  • Łukasz Witanowski

    (Turbine Department, Institute of Fluid-Flow Machinery, Polish Academy of Sciences, 80-231 Gdańsk, Poland)

Abstract

In light of the intensifying global climate crisis and the increasing demand for efficient electricity and cooling systems, the exploration of advanced power generation technologies has become crucial. This paper presents a comprehensive analysis of Organic Rankine Cycle–Vapor Compression Cycle (ORC-VCC) systems utilizing low-grade waste heat for the dual purpose of electricity and cooling production. The study focuses on systems that harness waste heat below 90 °C with thermal inputs up to 500 kW. An in-house Python code was developed to calculate cycle parameters and perform multi-objective optimization targeting the maximization of both ORC-VCC efficiency and power output. The optimization was conducted for 10 different cases by evaluating five working fluids across two different ambient temperatures. The analysis reveals that the optimized system achieved an impressive overall cycle efficiency exceeding 90%, demonstrating the significant potential of ORC-VCC technology in waste heat recovery applications. The Non-Dominated Sorting Genetic Algorithm II (NSGA-II) multi-objective optimization approach was found to be particularly effective at navigating the multi-dimensional solution space and identifying the global optimum. This study provides valuable insights into system performance across a range of operating conditions and design parameters. Sensitivity analyses highlight key factors influencing cycle efficiency and power output. These findings have important implications for the development and deployment of ORC-VCC systems as a sustainable and efficient solution to meet growing energy needs while reducing greenhouse gas emissions.

Suggested Citation

  • Łukasz Witanowski, 2024. "Optimization of an Organic Rankine Cycle–Vapor Compression Cycle System for Electricity and Cooling Production from Low-Grade Waste Heat," Energies, MDPI, vol. 17(22), pages 1-19, November.
  • Handle: RePEc:gam:jeners:v:17:y:2024:i:22:p:5566-:d:1515980
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/17/22/5566/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/17/22/5566/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Alshammari, Saif & Kadam, Sambhaji T. & Yu, Zhibin, 2023. "Assessment of single rotor expander-compressor device in combined organic Rankine cycle (ORC) and vapor compression refrigeration cycle (VCR)," Energy, Elsevier, vol. 282(C).
    2. Saboora Khatoon & Nasser Mohammed A. Almefreji & Man-Hoe Kim, 2021. "Thermodynamic Study of a Combined Power and Refrigeration System for Low-Grade Heat Energy Source," Energies, MDPI, vol. 14(2), pages 1-13, January.
    3. Kimiya Aram & Roohollah Taherkhani & Agnė Šimelytė, 2022. "Multistage Optimization toward a Nearly Net Zero Energy Building Due to Climate Change," Energies, MDPI, vol. 15(3), pages 1-21, January.
    4. Grauberger, Alex & Young, Derek & Bandhauer, Todd, 2022. "Off-design performance of an organic Rankine-vapor compression cooling cycle using R1234ze(E)," Applied Energy, Elsevier, vol. 321(C).
    5. Man-Hoe Kim, 2022. "Energy and Exergy Analysis of Solar Organic Rankine Cycle Coupled with Vapor Compression Refrigeration Cycle," Energies, MDPI, vol. 15(15), pages 1-16, August.
    6. Lina Wang & Jun Yang & Bing Qu & Chang Pang, 2024. "Multi-Objective Optimization of an Organic Rankine Cycle (ORC) for a Hybrid Solar–Waste Energy Plant," Energies, MDPI, vol. 17(8), pages 1-15, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Łukasz Witanowski, 2024. "Multi-Objective Optimization of a Small-Scale ORC-VCC System Using Low-GWP Refrigerants," Energies, MDPI, vol. 17(21), pages 1-18, October.
    2. Haojie Chen & Man-Hoe Kim, 2022. "Thermodynamic Analysis and Working Fluid Selection of a Novel Cogeneration System Based on a Regenerative Organic Flash Cycle," Energies, MDPI, vol. 15(21), pages 1-25, October.
    3. Babras Khan & Man-Hoe Kim, 2022. "Energy and Exergy Analyses of a Novel Combined Heat and Power System Operated by a Recuperative Organic Rankine Cycle Integrated with a Water Heating System," Energies, MDPI, vol. 15(18), pages 1-19, September.
    4. Zhou, Xia & Fang, Song & Zhang, Hanwei & Xu, Zhuoren & Jiang, Hanying & Rong, Yangyiming & Wang, Kai & Zhi, Xiaoqin & Qiu, Limin, 2023. "Dynamic characteristics of a mechanically coupled organic Rankine-vapor compression system for heat-driven cooling," Energy, Elsevier, vol. 280(C).
    5. Hao Wang & Quan Liu & Hongyang Zhang & Yinlong Jin & Wenzhen Yu, 2022. "A Two-Stage Decision-Making Method Based on WebGIS for Bulk Material Transportation of Hydropower Construction," Energies, MDPI, vol. 15(5), pages 1-21, February.
    6. Hoda Ramezani & Ehsan Reza, 2022. "The Consequence of Combining Indigenous Techniques with a Flexible Design to Reduce Energy Consumption in Residential Buildings for Future Architecture," Sustainability, MDPI, vol. 14(21), pages 1-15, October.
    7. Mohammed Alghamdi & Ibrahim Al-Kharsan & Sana Shahab & Abdullah Albaker & Reza Alayi & Laveet Kumar & Mamdouh El Haj Assad, 2023. "Investigation of Energy and Exergy of Geothermal Organic Rankine Cycle," Energies, MDPI, vol. 16(5), pages 1-13, February.
    8. Tailu Li & Xuelong Li & Haiyang Gao & Xiang Gao & Nan Meng, 2022. "Thermodynamic Performance of Geothermal Energy Cascade Utilization for Combined Heating and Power Based on Organic Rankine Cycle and Vapor Compression Cycle," Energies, MDPI, vol. 15(19), pages 1-24, October.
    9. Hu, Tao & Zhang, Jun & Su, Liangbin & Wang, Gang & Yu, Wan & Su, Huashan & Xiao, Renzheng, 2024. "Performance optimization and techno-economic analysis of a novel geothermal system," Energy, Elsevier, vol. 301(C).
    10. Esra Özdemir Küçük & Muhsin Kılıç, 2023. "Exergoeconomic and Exergetic Sustainability Analysis of a Combined Dual-Pressure Organic Rankine Cycle and Vapor Compression Refrigeration Cycle," Sustainability, MDPI, vol. 15(8), pages 1-28, April.
    11. Zihan Zhang & Wanjiang Wang & Junkang Song & Zhe Wang & Weiyi Wang, 2022. "Multi-Objective Optimization of Ultra-Low Energy Consumption Buildings in Severely Cold Regions Considering Life Cycle Performance," Sustainability, MDPI, vol. 14(24), pages 1-17, December.
    12. Sun, Xiaocun & Shi, Lingfeng & Zhou, Shuo & Zhang, Yonghao & Yao, Yu & Tian, Hua & Shu, Gequn, 2024. "Experimental investigation on CO2-based zeotropic mixture composition-adjustable system," Energy, Elsevier, vol. 300(C).
    13. Mortazavi, Hamed & Beni, Hamidreza Mortazavy & Nadooshan, Afshin Ahmadi & Islam, Mohammad S. & Ghalambaz, Mohammad, 2024. "4E analysis and triple objective NSGA-II optimization of a novel solar-driven combined ejector-enhanced power and two-stage cooling (EORC-TCRC) system," Energy, Elsevier, vol. 294(C).
    14. Ping, Xu & Yang, Fubin & Zhang, Hongguang & Xing, Chengda & Yang, Anren & Yan, Yinlian & Pan, Yachao & Wang, Yan, 2023. "Ensemble of self-organizing adaptive maps and dynamic multi-objective optimization for organic Rankine cycle (ORC) under transportation and driving environment," Energy, Elsevier, vol. 275(C).
    15. Hongmei Yin & Likai Hu & Yang Li & Yulie Gong & Yanping Du & Chaofan Song & Jun Zhao, 2021. "Application of ORC in a Distributed Integrated Energy System Driven by Deep and Shallow Geothermal Energy," Energies, MDPI, vol. 14(17), pages 1-15, September.
    16. Karthikeyan, B. & Praveen Kumar, G. & Narayanan, Ramadas & R, Saravanan & Coronas, Alberto, 2024. "Thermo-economic optimization of hybrid solar-biomass driven organic rankine cycle integrated heat pump and PEM electrolyser for combined power, heating, and green hydrogen applications," Energy, Elsevier, vol. 299(C).
    17. Anna Szymczak-Graczyk & Gabriela Gajewska & Ireneusz Laks & Wojciech Kostrzewski, 2022. "Influence of Variable Moisture Conditions on the Value of the Thermal Conductivity of Selected Insulation Materials Used in Passive Buildings," Energies, MDPI, vol. 15(7), pages 1-17, April.
    18. Xia, Xiaoxia & Liu, Zhipeng & Wang, Zhiqi & Sun, Tong & Zhang, Hualong, 2023. "Multi-layer performance optimization based on operation parameter-working fluid-heat source for the ORC-VCR system," Energy, Elsevier, vol. 272(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:17:y:2024:i:22:p:5566-:d:1515980. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.