IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v17y2024i22p5535-d1514806.html
   My bibliography  Save this article

Historical Evolution and Current Developments in Building Thermal Insulation Materials—A Review

Author

Listed:
  • Barbara Klemczak

    (Faculty of Civil Engineering, Silesian University of Technology, 44-100 Gliwice, Poland)

  • Beata Kucharczyk-Brus

    (Faculty of Architecture, Silesian University of Technology, 44-100 Gliwice, Poland)

  • Anna Sulimowska

    (Faculty of Architecture, Silesian University of Technology, 44-100 Gliwice, Poland)

  • Rafał Radziewicz-Winnicki

    (Faculty of Architecture, Silesian University of Technology, 44-100 Gliwice, Poland)

Abstract

The European Climate Law mandates a 55% reduction in CO 2 emissions by 2030, intending to achieve climate neutrality by 2050. To meet these targets, there is a strong focus on reducing energy consumption in buildings, particularly for heating and cooling, which are the primary drivers of energy use and greenhouse gas emissions. As a result, the demand for energy-efficient and sustainable buildings is increasing, and thermal insulation plays a crucial role in minimizing energy consumption for both winter heating and summer cooling. This review explores the historical development of thermal insulation materials, beginning with natural options such as straw, wool, and clay, progressing to materials like cork, asbestos, and mineral wool, and culminating in synthetic insulators such as fiberglass and polystyrene. The review also examines innovative materials like polyurethane foam, vacuum insulation panels, and cement foams enhanced with phase change materials. Additionally, it highlights the renewed interest in environmentally friendly materials like cellulose, hemp, and sheep wool. The current challenges in developing sustainable, high-performance building solutions are discussed, including the implementation of the 6R principles for insulating materials. Finally, the review not only traces the historical evolution of insulation materials but also provides various classifications and summarizes emerging aspects in the field.

Suggested Citation

  • Barbara Klemczak & Beata Kucharczyk-Brus & Anna Sulimowska & Rafał Radziewicz-Winnicki, 2024. "Historical Evolution and Current Developments in Building Thermal Insulation Materials—A Review," Energies, MDPI, vol. 17(22), pages 1-30, November.
  • Handle: RePEc:gam:jeners:v:17:y:2024:i:22:p:5535-:d:1514806
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/17/22/5535/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/17/22/5535/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Kati Kulovesi & Sebastian Oberthür & Harro van Asselt & Annalisa Savaresi, 2024. "The European Climate Law: Strengthening EU Procedural Climate Governance?," Journal of Environmental Law, Oxford University Press, vol. 36(1), pages 23-42.
    2. Dawei Zhao & Zuotai Zhang & Xulong Tang & Lili Liu & Xidong Wang, 2014. "Preparation of Slag Wool by Integrated Waste-Heat Recovery and Resource Recycling of Molten Blast Furnace Slags: From Fundamental to Industrial Application," Energies, MDPI, vol. 7(5), pages 1-15, May.
    3. Bre, Facundo & Lamberts, Roberto & Flores-Larsen, Silvana & Koenders, Eduardus A.B., 2023. "Multi-objective optimization of latent energy storage in buildings by using phase change materials with different melting temperatures," Applied Energy, Elsevier, vol. 336(C).
    4. Badr Moutik & John Summerscales & Jasper Graham-Jones & Richard Pemberton, 2023. "Life Cycle Assessment Research Trends and Implications: A Bibliometric Analysis," Sustainability, MDPI, vol. 15(18), pages 1-45, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yongqi Sun & Zuotai Zhang & Lili Liu & Xidong Wang, 2015. "Heat Recovery from High Temperature Slags: A Review of Chemical Methods," Energies, MDPI, vol. 8(3), pages 1-19, March.
    2. Zhang, Huining & Dong, Jianping & Wei, Chao & Cao, Caifang & Zhang, Zuotai, 2022. "Future trend of terminal energy conservation in steelmaking plant: Integration of molten slag heat recovery-combustible gas preparation from waste plastics and CO2 emission reduction," Energy, Elsevier, vol. 239(PE).
    3. Xiao, Yuling & Yang, Qianli & Fei, Fan & Li, Kai & Jiang, Yijun & Zhang, Yuanwen & Fukuda, Hiroatsu & Ma, Qingsong, 2024. "Review of Trombe wall technology: Trends in optimization," Renewable and Sustainable Energy Reviews, Elsevier, vol. 200(C).
    4. Zhang, Chenyu & Ma, Zhenjun & Qu, Zhiguo & Xu, Hongtao, 2024. "Multi-objective prediction and optimization of performance of three-layer latent heat storage unit based on intermittent charging and discharging strategies," Renewable Energy, Elsevier, vol. 225(C).
    5. Sritharan Thirumalai Kumaran & Chekfoung Tan & Michael Emes, 2024. "Quantifying the Environmental Impacts of Manufacturing Low Earth Orbit (LEO) Satellite Constellations," Sustainability, MDPI, vol. 16(21), pages 1-22, October.
    6. Dominika Siwiec & Wiesław Frącz & Andrzej Pacana & Grzegorz Janowski & Łukasz Bąk, 2024. "Analysis of the Ecological Footprint from the Extraction and Processing of Materials in the LCA Phase of Lithium-Ion Batteries," Sustainability, MDPI, vol. 16(12), pages 1-19, June.
    7. Stanisław Bodziacki & Mateusz Malinowski & Stanisław Famielec & Anna Krakowiak-Bal & Zuzanna Basak & Maria Łukasiewicz & Katarzyna Wolny-Koładka & Atılgan Atılgan & Ozan Artun, 2024. "Environmental Assessment of Energy System Upgrades in Public Buildings," Energies, MDPI, vol. 17(13), pages 1-18, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:17:y:2024:i:22:p:5535-:d:1514806. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.