IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v17y2024i19p5013-d1494611.html
   My bibliography  Save this article

The Impact of Ambient Weather Conditions and Energy Usage Patterns on the Performance of a Domestic Off-Grid Photovoltaic System

Author

Listed:
  • Iviwe Mcingani

    (Physics Department, University of Fort Hare, Private Bag X1314, Alice 5700, South Africa)

  • Edson L. Meyer

    (Fort Hare Institute of Technology, University of Fort Hare, Private Bag X1314, Alice 5700, South Africa)

  • Ochuko K. Overen

    (Fort Hare Institute of Technology, University of Fort Hare, Private Bag X1314, Alice 5700, South Africa)

Abstract

Solar photovoltaic (PV) systems are growing rapidly as a renewable energy source. Evaluating the performance of a PV system based on local weather conditions is crucial for its adoption and deployment. However, the current IEC 61724 standard, used for assessing PV system performance, is limited to grid-connected systems. This standard may not accurately reflect the performance of off-grid PV systems. This study aims to evaluate how ambient weather conditions and energy usage patterns affect the performance of an off-grid PV system. This study uses a 3.8 kWp building-integrated photovoltaic (BIPV) system located at SolarWatt Park, University of Fort Hare, Alice, as a case study. Meteorological and electrical data from August and November are analyzed to assess the winter and summer performance of the BIPV system using the IEC 61724 standard. The BIPV system generated 376.29 kWh in winter and 366.38 kWh in summer, with a total energy consumption of 209.50 kWh in winter and 236.65 kWh in summer. Solar irradiation during winter was 130.18 kWh/m 2 , while it was 210.24 kWh/m 2 during summer. The average daily performance ratio (PR) was 44.01% in winter and 28.94% in summer. The observed decrease in PR during the summer month was attributed to the higher levels of solar irradiance experienced during this time, which outweighs the increased AC energy output. The low-performance ratio does not indicate technical issues but rather a mismatch between the load demand and PV generation. The results of this study highlight the need for a separate method to assess the performance of off-grid PV systems.

Suggested Citation

  • Iviwe Mcingani & Edson L. Meyer & Ochuko K. Overen, 2024. "The Impact of Ambient Weather Conditions and Energy Usage Patterns on the Performance of a Domestic Off-Grid Photovoltaic System," Energies, MDPI, vol. 17(19), pages 1-19, October.
  • Handle: RePEc:gam:jeners:v:17:y:2024:i:19:p:5013-:d:1494611
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/17/19/5013/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/17/19/5013/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. van Dyk, E.E. & Meyer, E.L., 2004. "Analysis of the effect of parasitic resistances on the performance of photovoltaic modules," Renewable Energy, Elsevier, vol. 29(3), pages 333-344.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Carrero, C. & Rodríguez, J. & Ramírez, D. & Platero, C., 2010. "Simple estimation of PV modules loss resistances for low error modelling," Renewable Energy, Elsevier, vol. 35(5), pages 1103-1108.
    2. Humada, Ali M. & Hojabri, Mojgan & Mekhilef, Saad & Hamada, Hussein M., 2016. "Solar cell parameters extraction based on single and double-diode models: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 56(C), pages 494-509.
    3. Carrero, C. & Ramirez, D. & Rodríguez, J. & Castillo-Sierra, R., 2021. "Sensitivity analysis of loss resistances variations of PV generators applied to the assessment of maximum power point changes due to degradation," Renewable Energy, Elsevier, vol. 173(C), pages 351-361.
    4. Ghani, F. & Rosengarten, G. & Duke, M. & Carson, J.K., 2014. "The numerical calculation of single-diode solar-cell modelling parameters," Renewable Energy, Elsevier, vol. 72(C), pages 105-112.
    5. Bastidas-Rodriguez, J.D. & Petrone, G. & Ramos-Paja, C.A. & Spagnuolo, G., 2017. "A genetic algorithm for identifying the single diode model parameters of a photovoltaic panel," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 131(C), pages 38-54.
    6. Cuce, Erdem & Cuce, Pinar Mert & Bali, Tulin, 2013. "An experimental analysis of illumination intensity and temperature dependency of photovoltaic cell parameters," Applied Energy, Elsevier, vol. 111(C), pages 374-382.
    7. Torres-Ramírez, M. & Nofuentes, G. & Silva, J.P. & Silvestre, S. & Muñoz, J.V., 2014. "Study on analytical modelling approaches to the performance of thin film PV modules in sunny inland climates," Energy, Elsevier, vol. 73(C), pages 731-740.
    8. Kichou, Sofiane & Silvestre, Santiago & Nofuentes, Gustavo & Torres-Ramírez, Miguel & Chouder, Aissa & Guasch, Daniel, 2016. "Characterization of degradation and evaluation of model parameters of amorphous silicon photovoltaic modules under outdoor long term exposure," Energy, Elsevier, vol. 96(C), pages 231-241.
    9. Carrero, C. & Amador, J. & Arnaltes, S., 2007. "A single procedure for helping PV designers to select silicon PV modules and evaluate the loss resistances," Renewable Energy, Elsevier, vol. 32(15), pages 2579-2589.
    10. Shen, Yu & He, Zengxiang & Xu, Zhen & Wang, Yiye & Li, Chenxi & Zhang, Jinxia & Zhang, Kanjian & Wei, Haikun, 2022. "Modeling of photovoltaic modules under common shading conditions," Energy, Elsevier, vol. 256(C).
    11. Safdar Mehmood & Yang Xia & Furong Qu & Meng He, 2023. "Investigating the Performance of Efficient and Stable Planer Perovskite Solar Cell with an Effective Inorganic Carrier Transport Layer Using SCAPS-1D Simulation," Energies, MDPI, vol. 16(21), pages 1-14, November.
    12. Carrero, C. & Ramírez, D. & Rodríguez, J. & Platero, C.A., 2011. "Accurate and fast convergence method for parameter estimation of PV generators based on three main points of the I–V curve," Renewable Energy, Elsevier, vol. 36(11), pages 2972-2977.
    13. Javier Cubas & Santiago Pindado & Carlos De Manuel, 2014. "Explicit Expressions for Solar Panel Equivalent Circuit Parameters Based on Analytical Formulation and the Lambert W-Function," Energies, MDPI, vol. 7(7), pages 1-18, June.
    14. Singh, Rashmi & Sharma, Madhu & Rawat, Rahul & Banerjee, Chandan, 2018. "An assessment of series resistance estimation techniques for different silicon based SPV modules," Renewable and Sustainable Energy Reviews, Elsevier, vol. 98(C), pages 199-216.
    15. Bastidas-Rodriguez, J.D. & Franco, E. & Petrone, G. & Ramos-Paja, C.A. & Spagnuolo, G., 2017. "Quantification of photovoltaic module degradation using model based indicators," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 131(C), pages 101-113.
    16. Manuel J. Heredia-Rios & Luis Hernandez-Martinez & Monico Linares-Aranda & Mario Moreno-Moreno & Javier Flores Méndez, 2024. "Analysis of Losses Associated with Series Resistance (Rs) in Simple-Structured c-Si Solar Cells," Energies, MDPI, vol. 17(7), pages 1-13, March.
    17. Fouad, M.M. & Shihata, Lamia A. & Morgan, ElSayed I., 2017. "An integrated review of factors influencing the perfomance of photovoltaic panels," Renewable and Sustainable Energy Reviews, Elsevier, vol. 80(C), pages 1499-1511.
    18. Piliougine, M. & Guejia-Burbano, R.A. & Petrone, G. & Sánchez-Pacheco, F.J. & Mora-López, L. & Sidrach-de-Cardona, M., 2021. "Parameters extraction of single diode model for degraded photovoltaic modules," Renewable Energy, Elsevier, vol. 164(C), pages 674-686.
    19. Gxasheka, A.R. & van Dyk, E.E. & Meyer, E.L., 2005. "Evaluation of performance parameters of PV modules deployed outdoors," Renewable Energy, Elsevier, vol. 30(4), pages 611-620.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:17:y:2024:i:19:p:5013-:d:1494611. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.