IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v17y2024i21p5293-d1505966.html
   My bibliography  Save this article

Scenario Generation Based on Ant Colony Optimization for Modelling Stochastic Variables in Power Systems

Author

Listed:
  • Daniel Fernández Valderrama

    (Department of Informatics, Bioengineering, Robotics, and Systems Engineering, University of Genoa, 16145 Genoa, Italy)

  • Juan Ignacio Guerrero Alonso

    (Department of Electronic Technology, Escuela Politécnica Superior, University of Sevilla, 41011 Sevilla, Spain)

  • Carlos León de Mora

    (Department of Electronic Technology, Escuela Politécnica Superior, University of Sevilla, 41011 Sevilla, Spain)

  • Michela Robba

    (Department of Informatics, Bioengineering, Robotics, and Systems Engineering, University of Genoa, 16145 Genoa, Italy)

Abstract

Uncertainty is an important subject in optimization problems due to the unpredictable nature of real variables in the power system area, which can condition the solution’s accuracy. The effective modelling of stochastic variables can contribute to the reduction in losses in the system under evaluation and facilitate the implementation of an effective response in advance. To model uncertainty variables, the most extended technique is the scenario generation (SG) method. This method evaluates possible combinations of complete curves. Classical scenario generation methods are founded on probability distributions or robust stochastic optimization. This paper proposes a novel approach for constructing scenarios using the Ant Colony Optimization (ACO) algorithm, referred to as ACO-SG. This methodology does not require a previous statistical study of uncertainty data to generate new scenarios. A historical dataset and the desired number of scenarios are the inputs inserted into the algorithm. In the case study, the algorithm used historical data from the Savona Campus Smart Polygeneration Microgrid of the University of Genoa. The approach was applied to generate scenarios of photovoltaic generation and building consumption. The low values of the Euclidean distance were used in order to check the validity of the scenarios. Moreover, the error deviation of the scenarios generated with the goal of daily power were 1.77% and 0.144% for the cases of PV generation and building consumption, respectively. The different results for both cases are explained by the characteristics of the specific cases. Despite these different results, both were significantly low, which indicates the capability of the algorithm to generate any kind of feature within curves and its adaptability to any case of SG.

Suggested Citation

  • Daniel Fernández Valderrama & Juan Ignacio Guerrero Alonso & Carlos León de Mora & Michela Robba, 2024. "Scenario Generation Based on Ant Colony Optimization for Modelling Stochastic Variables in Power Systems," Energies, MDPI, vol. 17(21), pages 1-14, October.
  • Handle: RePEc:gam:jeners:v:17:y:2024:i:21:p:5293-:d:1505966
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/17/21/5293/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/17/21/5293/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Dong, Wei & Chen, Xianqing & Yang, Qiang, 2022. "Data-driven scenario generation of renewable energy production based on controllable generative adversarial networks with interpretability," Applied Energy, Elsevier, vol. 308(C).
    2. Michal Kaut, 2021. "Scenario generation by selection from historical data," Computational Management Science, Springer, vol. 18(3), pages 411-429, July.
    3. Oliveira, Beatriz Brito & Carravilla, Maria Antónia & Oliveira, José Fernando, 2022. "A diversity-based genetic algorithm for scenario generation," European Journal of Operational Research, Elsevier, vol. 299(3), pages 1128-1141.
    4. Amedeo Buonanno & Martina Caliano & Marialaura Di Somma & Giorgio Graditi & Maria Valenti, 2022. "A Comprehensive Tool for Scenario Generation of Solar Irradiance Profiles," Energies, MDPI, vol. 15(23), pages 1-18, November.
    5. Li, Jinghua & Zhou, Jiasheng & Chen, Bo, 2020. "Review of wind power scenario generation methods for optimal operation of renewable energy systems," Applied Energy, Elsevier, vol. 280(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Dhaval Dalal & Muhammad Bilal & Hritik Shah & Anwarul Islam Sifat & Anamitra Pal & Philip Augustin, 2023. "Cross-Correlated Scenario Generation for Renewable-Rich Power Systems Using Implicit Generative Models," Energies, MDPI, vol. 16(4), pages 1-20, February.
    2. Ali Keyvandarian & Ahmed Saif, 2024. "An Adaptive Distributionally Robust Optimization Approach for Optimal Sizing of Hybrid Renewable Energy Systems," Journal of Optimization Theory and Applications, Springer, vol. 203(2), pages 2055-2082, November.
    3. Li, Zilu & Peng, Xiangang & Cui, Wenbo & Xu, Yilin & Liu, Jianan & Yuan, Haoliang & Lai, Chun Sing & Lai, Loi Lei, 2024. "A novel scenario generation method of renewable energy using improved VAEGAN with controllable interpretable features," Applied Energy, Elsevier, vol. 363(C).
    4. Ye, Lin & Peng, Yishu & Li, Yilin & Li, Zhuo, 2024. "A novel informer-time-series generative adversarial networks for day-ahead scenario generation of wind power," Applied Energy, Elsevier, vol. 364(C).
    5. Markos A. Kousounadis-Knousen & Ioannis K. Bazionis & Athina P. Georgilaki & Francky Catthoor & Pavlos S. Georgilakis, 2023. "A Review of Solar Power Scenario Generation Methods with Focus on Weather Classifications, Temporal Horizons, and Deep Generative Models," Energies, MDPI, vol. 16(15), pages 1-29, July.
    6. Heo, SungKu & Byun, Jaewon & Ifaei, Pouya & Ko, Jaerak & Ha, Byeongmin & Hwangbo, Soonho & Yoo, ChangKyoo, 2024. "Towards mega-scale decarbonized industrial park (Mega-DIP): Generative AI-driven techno-economic and environmental assessment of renewable and sustainable energy utilization in petrochemical industry," Renewable and Sustainable Energy Reviews, Elsevier, vol. 189(PA).
    7. Yang, Mao & Wang, Da & Xu, Chuanyu & Dai, Bozhi & Ma, Miaomiao & Su, Xin, 2023. "Power transfer characteristics in fluctuation partition algorithm for wind speed and its application to wind power forecasting," Renewable Energy, Elsevier, vol. 211(C), pages 582-594.
    8. Zhu, Xiaoxun & Liu, Ruizhang & Chen, Yao & Gao, Xiaoxia & Wang, Yu & Xu, Zixu, 2021. "Wind speed behaviors feather analysis and its utilization on wind speed prediction using 3D-CNN," Energy, Elsevier, vol. 236(C).
    9. Jaehyun Yoo & Yongju Son & Myungseok Yoon & Sungyun Choi, 2023. "A Wind Power Scenario Generation Method Based on Copula Functions and Forecast Errors," Sustainability, MDPI, vol. 15(23), pages 1-15, December.
    10. Hu, Jinxing & Li, Hongru, 2022. "A transfer learning-based scenario generation method for stochastic optimal scheduling of microgrid with newly-built wind farm," Renewable Energy, Elsevier, vol. 185(C), pages 1139-1151.
    11. Hu, Wenyu & E, Jiaqiang & Tan, Yan & Zhang, Feng & Liao, Gaoliang, 2022. "Modified wind energy collection devices for harvesting convective wind energy from cars and trucks moving in the highway," Energy, Elsevier, vol. 247(C).
    12. Wang, Jiangjiang & Huo, Shuojie & Yan, Rujing & Cui, Zhiheng, 2022. "Leveraging heat accumulation of district heating network to improve performances of integrated energy system under source-load uncertainties," Energy, Elsevier, vol. 252(C).
    13. Yang, Hongming & Liang, Rui & Yuan, Yuan & Chen, Bowen & Xiang, Sheng & Liu, Junpeng & Zhao, Huan & Ackom, Emmanuel, 2022. "Distributionally robust optimal dispatch in the power system with high penetration of wind power based on net load fluctuation data," Applied Energy, Elsevier, vol. 313(C).
    14. Li, Ding & Zhang, Yufei & Yang, Zheng & Jin, Yaohui & Xu, Yanyan, 2024. "Sensing anomaly of photovoltaic systems with sequential conditional variational autoencoder," Applied Energy, Elsevier, vol. 353(PA).
    15. Kim, Jeongdong & Qi, Meng & Park, Jinwoo & Moon, Il, 2023. "Revealing the impact of renewable uncertainty on grid-assisted power-to-X: A data-driven reliability-based design optimization approach," Applied Energy, Elsevier, vol. 339(C).
    16. Liu, Jingxuan & Zang, Haixiang & Zhang, Fengchun & Cheng, Lilin & Ding, Tao & Wei, Zhinong & Sun, Guoqiang, 2023. "A hybrid meteorological data simulation framework based on time-series generative adversarial network for global daily solar radiation estimation," Renewable Energy, Elsevier, vol. 219(P1).
    17. Costas Prouskas & Angelos Mourkas & Georgios Zois & Elefterios Lidorikis & Panos Patsalas, 2022. "A New Type of Architecture of Dye-Sensitized Solar Cells as an Alternative Pathway to Outdoor Photovoltaics," Energies, MDPI, vol. 15(7), pages 1-14, March.
    18. Hwang Goh, Hui & Shi, Shuaiwei & Liang, Xue & Zhang, Dongdong & Dai, Wei & Liu, Hui & Yuong Wong, Shen & Agustiono Kurniawan, Tonni & Chen Goh, Kai & Leei Cham, Chin, 2022. "Optimal energy scheduling of grid-connected microgrids with demand side response considering uncertainty," Applied Energy, Elsevier, vol. 327(C).
    19. Chen, Xianqing & Dong, Wei & Yang, Qiang, 2022. "Robust optimal capacity planning of grid-connected microgrid considering energy management under multi-dimensional uncertainties," Applied Energy, Elsevier, vol. 323(C).
    20. Yoro, Kelvin O. & Daramola, Michael O. & Sekoai, Patrick T. & Wilson, Uwemedimo N. & Eterigho-Ikelegbe, Orevaoghene, 2021. "Update on current approaches, challenges, and prospects of modeling and simulation in renewable and sustainable energy systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 150(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:17:y:2024:i:21:p:5293-:d:1505966. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.