IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v299y2022i3p1128-1141.html
   My bibliography  Save this article

A diversity-based genetic algorithm for scenario generation

Author

Listed:
  • Oliveira, Beatriz Brito
  • Carravilla, Maria Antónia
  • Oliveira, José Fernando

Abstract

Tackling uncertainty is becoming increasingly relevant for decision-support across fields due to its critical impact on real-world problems. Uncertainty is often modelled using scenarios, which are combinations of possible outcomes of the uncertain parameters in a problem. Alongside expected value methods, decisions under uncertainty may also be tackled using methods that do not rely on probability distributions and model different decision-maker risk profiles. Scenarios are at the core of these approaches. Therefore, we propose a scenario generation methodology that seizes the structure and concepts of genetic algorithms. This methodology aims to obtain a diverse set of scenarios, evolving a scenario population with a diversity goal. Diversity is here expressed as the difference in the impact that scenarios have on the value of potential solutions to the problem. Moreover, this method does not require a priori knowledge of probability distributions or statistical moments of uncertain parameters, as it is based on their range. We adapt the available code for Biased-Random Key Genetic Algorithms to apply the methodology to a packing problem under demand uncertainty as a proof of concept, also extending its use to a multi-objective setting. We make available these code adaptations to allow the straightforward application of this scenario generation method to other problems. With this, the decision-maker obtains scenarios with a distinct impact on potential solutions, enabling the use of different criteria based on their profile and preferences.

Suggested Citation

  • Oliveira, Beatriz Brito & Carravilla, Maria Antónia & Oliveira, José Fernando, 2022. "A diversity-based genetic algorithm for scenario generation," European Journal of Operational Research, Elsevier, vol. 299(3), pages 1128-1141.
  • Handle: RePEc:eee:ejores:v:299:y:2022:i:3:p:1128-1141
    DOI: 10.1016/j.ejor.2021.09.047
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0377221721008237
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ejor.2021.09.047?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Tsai, Shing Chih & Yeh, Yingchieh & Kuo, Chen Yun, 2021. "Efficient optimization algorithms for surgical scheduling under uncertainty," European Journal of Operational Research, Elsevier, vol. 293(2), pages 579-593.
    2. Dimitris Bertsimas & Melvyn Sim, 2004. "The Price of Robustness," Operations Research, INFORMS, vol. 52(1), pages 35-53, February.
    3. Wascher, Gerhard & Hau[ss]ner, Heike & Schumann, Holger, 2007. "An improved typology of cutting and packing problems," European Journal of Operational Research, Elsevier, vol. 183(3), pages 1109-1130, December.
    4. Tiberius, Victor & Siglow, Caroline & Sendra-García, Javier, 2020. "Scenarios in business and management: The current stock and research opportunities," Journal of Business Research, Elsevier, vol. 121(C), pages 235-242.
    5. Silva, Elsa & Oliveira, José F. & Wäscher, Gerhard, 2014. "2DCPackGen: A problem generator for two-dimensional rectangular cutting and packing problems," European Journal of Operational Research, Elsevier, vol. 237(3), pages 846-856.
    6. Oliveira, Beatriz B. & Carravilla, Maria Antónia & Oliveira, José F. & Costa, Alysson M., 2019. "A co-evolutionary matheuristic for the car rental capacity-pricing stochastic problem," European Journal of Operational Research, Elsevier, vol. 276(2), pages 637-655.
    7. Borgonovo, E. & Cappelli, V. & Maccheroni, F. & Marinacci, M., 2018. "Risk analysis and decision theory: A bridge," European Journal of Operational Research, Elsevier, vol. 264(1), pages 280-293.
    8. Thiago Noronha & Mauricio Resende & Celso Ribeiro, 2011. "A biased random-key genetic algorithm for routing and wavelength assignment," Journal of Global Optimization, Springer, vol. 50(3), pages 503-518, July.
    9. Xie, Shiwei & Hu, Zhijian & Wang, Jueying, 2020. "Two-stage robust optimization for expansion planning of active distribution systems coupled with urban transportation networks," Applied Energy, Elsevier, vol. 261(C).
    10. Paul, Jomon A. & Zhang, Minjiao, 2019. "Supply location and transportation planning for hurricanes: A two-stage stochastic programming framework," European Journal of Operational Research, Elsevier, vol. 274(1), pages 108-125.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Daniel Fernández Valderrama & Juan Ignacio Guerrero Alonso & Carlos León de Mora & Michela Robba, 2024. "Scenario Generation Based on Ant Colony Optimization for Modelling Stochastic Variables in Power Systems," Energies, MDPI, vol. 17(21), pages 1-14, October.
    2. Xiaoming Liu & Liang Wang & Yongji Cao & Ruicong Ma & Yao Wang & Changgang Li & Rui Liu & Shihao Zou, 2023. "Renewable Scenario Generation Based on the Hybrid Genetic Algorithm with Variable Chromosome Length," Energies, MDPI, vol. 16(7), pages 1-16, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ramos, António G. & Silva, Elsa & Oliveira, José F., 2018. "A new load balance methodology for container loading problem in road transportation," European Journal of Operational Research, Elsevier, vol. 266(3), pages 1140-1152.
    2. Gahm, Christian & Uzunoglu, Aykut & Wahl, Stefan & Ganschinietz, Chantal & Tuma, Axel, 2022. "Applying machine learning for the anticipation of complex nesting solutions in hierarchical production planning," European Journal of Operational Research, Elsevier, vol. 296(3), pages 819-836.
    3. Fowler, John W. & Mönch, Lars, 2022. "A survey of scheduling with parallel batch (p-batch) processing," European Journal of Operational Research, Elsevier, vol. 298(1), pages 1-24.
    4. Soares, Leonardo Cabral R. & Carvalho, Marco Antonio M., 2020. "Biased random-key genetic algorithm for scheduling identical parallel machines with tooling constraints," European Journal of Operational Research, Elsevier, vol. 285(3), pages 955-964.
    5. Gonçalves, José Fernando & Wäscher, Gerhard, 2020. "A MIP model and a biased random-key genetic algorithm based approach for a two-dimensional cutting problem with defects," European Journal of Operational Research, Elsevier, vol. 286(3), pages 867-882.
    6. Dang, Duc-Cuong & Currie, Christine S.M. & Onggo, Bhakti Stephan & Chaerani, Diah & Achmad, Audi Luqmanul Hakim, 2023. "Budget allocation of food procurement for natural disaster response," European Journal of Operational Research, Elsevier, vol. 311(2), pages 754-768.
    7. Caserta, Marco & Voß, Stefan, 2019. "The robust multiple-choice multidimensional knapsack problem," Omega, Elsevier, vol. 86(C), pages 16-27.
    8. Wang, Duo & Yang, Kai & Yang, Lixing & Dong, Jianjun, 2023. "Two-stage distributionally robust optimization for disaster relief logistics under option contract and demand ambiguity," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 170(C).
    9. Iori, Manuel & de Lima, Vinícius L. & Martello, Silvano & Miyazawa, Flávio K. & Monaci, Michele, 2021. "Exact solution techniques for two-dimensional cutting and packing," European Journal of Operational Research, Elsevier, vol. 289(2), pages 399-415.
    10. Yu, Wuyang, 2023. "A robust model for emergency supplies prepositioning and transportation considering road disruptions," Operations Research Perspectives, Elsevier, vol. 10(C).
    11. Galrão Ramos, A. & Oliveira, José F. & Gonçalves, José F. & Lopes, Manuel P., 2016. "A container loading algorithm with static mechanical equilibrium stability constraints," Transportation Research Part B: Methodological, Elsevier, vol. 91(C), pages 565-581.
    12. Alyne Toscano & Socorro Rangel & Horacio Hideki Yanasse, 2017. "A heuristic approach to minimize the number of saw cycles in small-scale furniture factories," Annals of Operations Research, Springer, vol. 258(2), pages 719-746, November.
    13. Claudio Arbib & Fabrizio Marinelli & Mustafa Ç. Pınar & Andrea Pizzuti, 2022. "Robust stock assortment and cutting under defects in automotive glass production," Production and Operations Management, Production and Operations Management Society, vol. 31(11), pages 4154-4172, November.
    14. Li, Yuchen & Zhang, Jianghua & Yu, Guodong, 2020. "A scenario-based hybrid robust and stochastic approach for joint planning of relief logistics and casualty distribution considering secondary disasters," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 141(C).
    15. Wang, Xinfang (Jocelyn) & Paul, Jomon A., 2020. "Robust optimization for hurricane preparedness," International Journal of Production Economics, Elsevier, vol. 221(C).
    16. Silva, Allyson & Coelho, Leandro C. & Darvish, Maryam & Renaud, Jacques, 2022. "A cutting plane method and a parallel algorithm for packing rectangles in a circular container," European Journal of Operational Research, Elsevier, vol. 303(1), pages 114-128.
    17. Li, Xueping & Zhang, Kaike, 2018. "Single batch processing machine scheduling with two-dimensional bin packing constraints," International Journal of Production Economics, Elsevier, vol. 196(C), pages 113-121.
    18. Jianwen Ren & Yingqiang Xu & Shiyuan Wang, 2018. "A Distributed Robust Dispatch Approach for Interconnected Systems with a High Proportion of Wind Power Penetration," Energies, MDPI, vol. 11(4), pages 1-18, April.
    19. Wenqing Chen & Melvyn Sim & Jie Sun & Chung-Piaw Teo, 2010. "From CVaR to Uncertainty Set: Implications in Joint Chance-Constrained Optimization," Operations Research, INFORMS, vol. 58(2), pages 470-485, April.
    20. Jean-François Côté & Manuel Iori, 2018. "The Meet-in-the-Middle Principle for Cutting and Packing Problems," INFORMS Journal on Computing, INFORMS, vol. 30(4), pages 646-661, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:299:y:2022:i:3:p:1128-1141. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.