IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v17y2024i21p5285-d1505491.html
   My bibliography  Save this article

A Mini-Review on Recent Developments and Improvements in CO 2 Catalytic Conversion to Methanol: Prospects for the Cement Plant Industry

Author

Listed:
  • Luísa Marques

    (c5Lab—Sustainable Construction Materials Association, 2795-242 Linda-a-Velha, Portugal)

  • Maria Vieira

    (c5Lab—Sustainable Construction Materials Association, 2795-242 Linda-a-Velha, Portugal)

  • José Condeço

    (c5Lab—Sustainable Construction Materials Association, 2795-242 Linda-a-Velha, Portugal
    CERENA, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais 1, 1049-001 Lisboa, Portugal)

  • Carlos Henriques

    (Centro de Química Estrutural (CQE), Institute of Molecular Sciences, Departamento de Engenharia Química, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal)

  • Maria Mateus

    (c5Lab—Sustainable Construction Materials Association, 2795-242 Linda-a-Velha, Portugal
    CERENA, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais 1, 1049-001 Lisboa, Portugal)

Abstract

The cement industry significantly impacts the environment due to natural resource extraction and fossil fuel combustion, with carbon dioxide (CO 2 ) emissions being a major concern. The industry emits 0.6 tons of CO 2 per ton of cement, accounting for about 8% of global CO 2 emissions. To meet the 13th United Nations Sustainable Development Goal, cement plants aim for carbon neutrality by 2050 through reducing CO 2 emissions and adopting Carbon Capture and Utilization (CCU) technologies. A promising approach is converting CO 2 into valuable chemicals and fuels, such as methanol (MeOH), using Power-to-Liquid (PtL) technologies. This process involves capturing CO 2 from cement plant flue gas and using hydrogen from renewable sources to produce renewable methanol (e-MeOH). Advancing the development of novel, efficient catalysts for direct CO 2 hydrogenation is crucial. This comprehensive mini-review presents a holistic view of recent advancements in CO 2 catalytic conversion to MeOH, focusing on catalyst performance, selectivity, and stability. It outlines a long-term strategy for utilizing captured CO 2 emissions from cement plants to produce MeOH, offering an experimental roadmap for the decarbonization of the cement industry.

Suggested Citation

  • Luísa Marques & Maria Vieira & José Condeço & Carlos Henriques & Maria Mateus, 2024. "A Mini-Review on Recent Developments and Improvements in CO 2 Catalytic Conversion to Methanol: Prospects for the Cement Plant Industry," Energies, MDPI, vol. 17(21), pages 1-23, October.
  • Handle: RePEc:gam:jeners:v:17:y:2024:i:21:p:5285-:d:1505491
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/17/21/5285/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/17/21/5285/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Mohammad Zahirul Khaiyum & Sudipa Sarker & Golam Kabir, 2023. "Evaluation of Carbon Emission Factors in the Cement Industry: An Emerging Economy Context," Sustainability, MDPI, vol. 15(21), pages 1-15, October.
    2. Sonia Dell’Aversano & Carlo Villante & Katia Gallucci & Giuseppina Vanga & Andrea Di Giuliano, 2024. "E-Fuels: A Comprehensive Review of the Most Promising Technological Alternatives towards an Energy Transition," Energies, MDPI, vol. 17(16), pages 1-43, August.
    3. Lee, Boreum & Lee, Hyunjun & Lim, Dongjun & Brigljević, Boris & Cho, Wonchul & Cho, Hyun-Seok & Kim, Chang-Hee & Lim, Hankwon, 2020. "Renewable methanol synthesis from renewable H2 and captured CO2: How can power-to-liquid technology be economically feasible?," Applied Energy, Elsevier, vol. 279(C).
    4. Uliasz-Bocheńczyk, Alicja & Deja, Jan, 2024. "Potential application of cement kiln dust in carbon capture, utilisation, and storage technology," Energy, Elsevier, vol. 292(C).
    5. Gale, John, 2004. "Geological storage of CO2: What do we know, where are the gaps and what more needs to be done?," Energy, Elsevier, vol. 29(9), pages 1329-1338.
    6. Wen-Hsien Tsai & Wei-Hong Lin, 2024. "Production Decision Model for the Cement Industry in Pursuit of Carbon Neutrality: Analysis of the Impact of Carbon Tax and Carbon Credit Costs," Sustainability, MDPI, vol. 16(6), pages 1-22, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lai, N.Y.G. & Yap, E.H. & Lee, C.W., 2011. "Viability of CCS: A broad-based assessment for Malaysia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(8), pages 3608-3616.
    2. Afshin Tatar & Amin Shokrollahi & Moonyong Lee & Tomoaki Kashiwao & Alireza Bahadori, 2015. "Prediction of supercritical CO 2 /brine relative permeability in sedimentary basins during carbon dioxide sequestration," Greenhouse Gases: Science and Technology, Blackwell Publishing, vol. 5(6), pages 756-771, December.
    3. Erlei Su & Yunpei Liang & Lei Li & Quanle Zou & Fanfan Niu, 2018. "Laboratory Study on Changes in the Pore Structures and Gas Desorption Properties of Intact and Tectonic Coals after Supercritical CO 2 Treatment: Implications for Coalbed Methane Recovery," Energies, MDPI, vol. 11(12), pages 1-13, December.
    4. Nasvi, M.C.M. & Ranjith, P.G. & Sanjayan, J. & Haque, A., 2013. "Sub- and super-critical carbon dioxide permeability of wellbore materials under geological sequestration conditions: An experimental study," Energy, Elsevier, vol. 54(C), pages 231-239.
    5. Griffin, Paul A. & Jaffe, Amy Myers & Lont, David H. & Dominguez-Faus, Rosa, 2015. "Science and the stock market: Investors' recognition of unburnable carbon," Energy Economics, Elsevier, vol. 52(PA), pages 1-12.
    6. Mohamed Lyes Kamel Khouadjia & Sara Bensalem & Cherif Belebchouche & Abderrachid Boumaza & Salim Hamlaoui & Slawomir Czarnecki, 2025. "Sustainable Geopolymer Tuff Composites Utilizing Iron Powder Waste: Rheological and Mechanical Performance Evaluation," Sustainability, MDPI, vol. 17(3), pages 1-17, February.
    7. Dang, Zheng & Wang, Xiaoming & Bie, Shizhen & Su, Xianbo & Hou, Shihui, 2024. "Experimental study of water occurrence in coal under different negative pressure conditions: Implication for CBM productivity during negative pressure drainage," Energy, Elsevier, vol. 303(C).
    8. Perera, M.S.A. & Ranjith, P.G. & Choi, S.K. & Airey, D., 2011. "The effects of sub-critical and super-critical carbon dioxide adsorption-induced coal matrix swelling on the permeability of naturally fractured black coal," Energy, Elsevier, vol. 36(11), pages 6442-6450.
    9. Wang, Jinkai & Feng, Xiaoyong & Wanyan, Qiqi & Zhao, Kai & Wang, Ziji & Pei, Gen & Xie, Jun & Tian, Bo, 2022. "Hysteresis effect of three-phase fluids in the high-intensity injection–production process of sandstone underground gas storages," Energy, Elsevier, vol. 242(C).
    10. Wu, Zhicong & Zhang, Ziyue & Xu, Gang & Ge, Shiyu & Xue, Xiaojun & Chen, Heng, 2024. "Thermodynamic and economic analysis of a new methanol synthesis system coupled with a biomass integrated gasification combined cycle," Energy, Elsevier, vol. 300(C).
    11. Ankang Miao & Yue Yuan & Yi Huang & Han Wu & Chao Feng, 2023. "Stochastic Optimization Model of Capacity Configuration for Integrated Energy Production System Considering Source-Load Uncertainty," Sustainability, MDPI, vol. 15(19), pages 1-22, September.
    12. Ruggero Angelico & Ferruccio Giametta & Biagio Bianchi & Pasquale Catalano, 2025. "Green Hydrogen for Energy Transition: A Critical Perspective," Energies, MDPI, vol. 18(2), pages 1-47, January.
    13. Armin Razmjoo & Arezoo Ghazanfari & Poul Alberg Østergaard & Mehdi Jahangiri & Andreas Sumper & Sahar Ahmadzadeh & Reza Eslamipoor, 2024. "Moving Toward the Expansion of Energy Storage Systems in Renewable Energy Systems—A Techno-Institutional Investigation with Artificial Intelligence Consideration," Sustainability, MDPI, vol. 16(22), pages 1-25, November.
    14. Samanta, Samiran & Roy, Dibyendu & Roy, Sumit & Smallbone, Andrew & Roskilly, Anthony Paul, 2023. "Techno-economic analysis of a fuel-cell driven integrated energy hub for decarbonising transportation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 179(C).
    15. Ricci, Elena Claire & Bosetti, Valentina & Baker, Erin & Jenni, Karen E., 2014. "From Expert Elicitations to Integrated Assessment: Future Prospects of Carbon Capture Technologies," Climate Change and Sustainable Development 172451, Fondazione Eni Enrico Mattei (FEEM).
    16. Gao, Ruxing & Zhang, Leiyu & Wang, Lei & Zhang, Chundong & Jun, Ki-Won & Kim, Seok Ki & Park, Hae-Gu & Gao, Ying & Zhu, Yuezhao & Wan, Hui & Guan, Guofeng & Zhao, Tiansheng, 2022. "Efficient production of renewable hydrocarbon fuels using waste CO2 and green H2 by integrating Fe-based Fischer-Tropsch synthesis and olefin oligomerization," Energy, Elsevier, vol. 248(C).
    17. Shafaei, Mohammad Javad & Abedi, Jalal & Hassanzadeh, Hassan & Chen, Zhangxin, 2012. "Reverse gas-lift technology for CO2 storage into deep saline aquifers," Energy, Elsevier, vol. 45(1), pages 840-849.
    18. Rimvydas Kaminskas & Irmantas Barauskas & Skomantas Uselis & Brigita Savickaite, 2025. "Binary Supplementary Cementitious Material from Expanded Clay Production Dust and Opoka," Sustainability, MDPI, vol. 17(2), pages 1-12, January.
    19. Huang, Renxing & Kang, Lixia & Liu, Yongzhong, 2022. "Renewable synthetic methanol system design based on modular production lines," Renewable and Sustainable Energy Reviews, Elsevier, vol. 161(C).
    20. Janusz Kotowicz & Mateusz Brzęczek & Aleksandra Walewska & Kamila Szykowska, 2022. "Methanol Production in the Brayton Cycle," Energies, MDPI, vol. 15(4), pages 1-14, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:17:y:2024:i:21:p:5285-:d:1505491. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.