IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v17y2024i20p5151-d1500055.html
   My bibliography  Save this article

Optimization of Organic Rankine Cycle for Hot Dry Rock Power System: A Stackelberg Game Approach

Author

Listed:
  • Zhehao Hu

    (School of Energy and Electrical Engineering, Qinghai University Xining, Xining 810016, China)

  • Wenbin Wu

    (Engineer School, Qinghai Institute of Technology, Xining 810016, China)

  • Yang Si

    (Engineer School, Qinghai Institute of Technology, Xining 810016, China)

Abstract

Due to its simple structure and stable operation, the Organic Rankine Cycle (ORC) has gained significant attention as a primary solution for low-grade thermal power generation. However, the economic challenges associated with development difficulties in hot dry rock (HDR) geothermal power systems have necessitated a better balance between performance and cost effectiveness within ORC systems. This paper establishes a game pattern of the Organic Rankine Cycle with performance as the master layer and economy as the slave layer, based on the Stackelberg game theory. The optimal working fluid for the ORC is identified as R600. At the R600 mass flow rate of 50 kg/s, the net system cycle work is 4186 kW, the generation efficiency is 14.52%, and the levelized cost of energy is 0.0176 USD/kWh. The research establishes an optimization method for the Organic Rankine Cycle based on the Stackelberg game framework, where the network of the system is the primary optimization objective, and the heat transfer areas of the evaporator and condenser serve as the secondary optimization objective. An iterative solving method is utilized to achieve equilibrium between the performance and economy of the ORC system. The proposed method is validated through a case study utilizing hot dry rock data from Qinghai Gonghe, allowing for a thorough analysis of the working fluid and system parameters. The findings indicate that the proposed approach effectively balances ORC performance with economic considerations, thereby enhancing the overall revenue of the HDR power system.

Suggested Citation

  • Zhehao Hu & Wenbin Wu & Yang Si, 2024. "Optimization of Organic Rankine Cycle for Hot Dry Rock Power System: A Stackelberg Game Approach," Energies, MDPI, vol. 17(20), pages 1-20, October.
  • Handle: RePEc:gam:jeners:v:17:y:2024:i:20:p:5151-:d:1500055
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/17/20/5151/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/17/20/5151/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Lu, Shyi-Min, 2018. "A global review of enhanced geothermal system (EGS)," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P2), pages 2902-2921.
    2. Zhang, Cheng & Liu, Chao & Wang, Shukun & Xu, Xiaoxiao & Li, Qibin, 2017. "Thermo-economic comparison of subcritical organic Rankine cycle based on different heat exchanger configurations," Energy, Elsevier, vol. 123(C), pages 728-741.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jie Li & Shengyuan Ji & Xiuli Wang & Hengyuan Zhang & Yafei Li & Xiaojie Qian & Yunpeng Xiao, 2024. "A Stackelberg Game-Based Optimal Scheduling Model for Multi-Microgrid Systems Considering Photovoltaic Consumption and Integrated Demand Response," Energies, MDPI, vol. 17(23), pages 1-18, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Li, Pengcheng & Cao, Qing & Li, Jing & Lin, Haiwei & Wang, Yandong & Gao, Guangtao & Pei, Gang & Jie, Desuan & Liu, Xunfen, 2021. "An innovative approach to recovery of fluctuating industrial exhaust heat sources using cascade Rankine cycle and two-stage accumulators," Energy, Elsevier, vol. 228(C).
    2. Zhao, Xinyue & Chen, Heng & Zheng, Qiwei & Liu, Jun & Pan, Peiyuan & Xu, Gang & Zhao, Qinxin & Jiang, Xue, 2023. "Thermo-economic analysis of a novel hydrogen production system using medical waste and biogas with zero carbon emission," Energy, Elsevier, vol. 265(C).
    3. Jizhe Guo & Zengchao Feng & Xuecheng Li, 2023. "Shear Strength and Energy Evolution of Granite under Real-Time Temperature," Sustainability, MDPI, vol. 15(11), pages 1-18, May.
    4. Wang, Gaosheng & Song, Xianzhi & Shi, Yu & Yang, Ruiyue & Yulong, Feixue & Zheng, Rui & Li, Jiacheng, 2021. "Heat extraction analysis of a novel multilateral-well coaxial closed-loop geothermal system," Renewable Energy, Elsevier, vol. 163(C), pages 974-986.
    5. Zhang, Bo & Guo, Tiankui & Qu, Zhanqing & Wang, Jiwei & Chen, Ming & Liu, Xiaoqiang, 2023. "Numerical simulation of fracture propagation and production performance in a fractured geothermal reservoir using a 2D FEM-based THMD coupling model," Energy, Elsevier, vol. 273(C).
    6. Zhang, Jiansong & Liu, Yongsheng & Lv, Jianguo & Yang, Gansheng & Xia, Jianxin, 2024. "Comparative investigation of heat extraction performance in 3D self-affine rough single fractures using CO2,N2O and H2O as heat transfer fluid," Renewable Energy, Elsevier, vol. 235(C).
    7. Ouyang, Tiancheng & Wang, Zhiping & Wang, Geng & Zhao, Zhongkai & Xie, Shutao & Li, Xiaoqing, 2021. "Advanced thermo-economic scheme and multi-objective optimization for exploiting the waste heat potentiality of marine natural gas engine," Energy, Elsevier, vol. 236(C).
    8. Knoblauch, Theresa A.K. & Trutnevyte, Evelina & Stauffacher, Michael, 2019. "Siting deep geothermal energy: Acceptance of various risk and benefit scenarios in a Swiss-German cross-national study," Energy Policy, Elsevier, vol. 128(C), pages 807-816.
    9. Hou, Xinglan & Zhong, Xiuping & Nie, Shuaishuai & Wang, Yafei & Tu, Guigang & Ma, Yingrui & Liu, Kunyan & Chen, Chen, 2024. "Study on the heat recovery behavior of horizontal well systems in the Qiabuqia geothermal area of the Gonghe Basin, China," Energy, Elsevier, vol. 286(C).
    10. Tao, Huayu & Qian, Xi & Zhou, Yi & Cheng, Hongfei, 2022. "Research progress of clay minerals in carbon dioxide capture," Renewable and Sustainable Energy Reviews, Elsevier, vol. 164(C).
    11. Yu, Ruyang & Zhang, Kai & Ramasubramanian, Brindha & Jiang, Shu & Ramakrishna, Seeram & Tang, Yuhang, 2024. "Ensemble learning for predicting average thermal extraction load of a hydrothermal geothermal field: A case study in Guanzhong Basin, China," Energy, Elsevier, vol. 296(C).
    12. Chen, Zhidong & Su, Chao & Wu, Zexuan & Wang, Weijia & Chen, Lei & Yang, Lijun & Kong, Yanqiang & Du, Xiaoze, 2023. "Operation strategy and performance analyses of a distributed energy system incorporating concentrating PV/T and air source heat pump for heating supply," Applied Energy, Elsevier, vol. 341(C).
    13. Liu, Jun & Zhao, Peng & Peng, Jiao & Xian, Hongyu, 2024. "Insight into the investigation of heat extraction performance affected by natural fractures in enhanced geothermal system (EGS) with THM multiphysical field model," Renewable Energy, Elsevier, vol. 231(C).
    14. Wang, Shukun & Li, Ke & Yu, Wei & Liu, Chao & Guan, Zhengjun, 2024. "Effects of non-condensable gas on thermodynamic performance of transcritical organic Rankine cycle," Energy, Elsevier, vol. 292(C).
    15. Yang, Fubin & Cho, Heejin & Zhang, Hongguang & Zhang, Jian, 2017. "Thermoeconomic multi-objective optimization of a dual loop organic Rankine cycle (ORC) for CNG engine waste heat recovery," Applied Energy, Elsevier, vol. 205(C), pages 1100-1118.
    16. Zhang, Ji & Zhang, Xiaomeng & Zhang, Zhixiang & Zhou, Peilin & Zhang, Yan & Yuan, Han, 2022. "Performance improvement of ocean thermal energy conversion organic Rankine cycle under temperature glide effect," Energy, Elsevier, vol. 246(C).
    17. Harshini, R.D.G.F. & Chaudhuri, A. & Ranjith, P.G, 2024. "Harnessing the heat below: Efficacy of closed-loop systems in the cooper basin, Australia," Energy, Elsevier, vol. 312(C).
    18. Wenlong Zhou & Xiangyun Hu & Shilong Yan & Hongdang Guo & Wei Chen & Sijing Liu & Chunyan Miao, 2020. "Genetic Analysis of Geothermal Resources and Geothermal Geological Characteristics in Datong Basin, Northern China," Energies, MDPI, vol. 13(7), pages 1-19, April.
    19. Lin, David T.W. & Hsieh, Jui Ching & Shih, Bo Yen, 2019. "The optimization of geothermal extraction based on supercritical CO2 porous heat transfer model," Renewable Energy, Elsevier, vol. 143(C), pages 1162-1171.
    20. Feng, Yong-qiang & Zhang, Fei-yang & Xu, Jing-wei & He, Zhi-xia & Zhang, Qiang & Xu, Kang-jing, 2023. "Parametric analysis and multi-objective optimization of biomass-fired organic Rankine cycle system combined heat and power under three operation strategies," Renewable Energy, Elsevier, vol. 208(C), pages 431-449.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:17:y:2024:i:20:p:5151-:d:1500055. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.