IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v17y2024i19p5005-d1494174.html
   My bibliography  Save this article

Analysis of Electricity Supply and Demand Balance in Residential Microgrids Integrated with Micro-CAES in Northern Portugal

Author

Listed:
  • Jan Markowski

    (Department of Thermal and Fluid Flow Machines, Faculty of Energy and Fuels, AGH University of Krakow, 30-059 Kraków, Poland)

  • Jacek Leszczyński

    (Department of Thermal and Fluid Flow Machines, Faculty of Energy and Fuels, AGH University of Krakow, 30-059 Kraków, Poland)

  • Paula Fernanda Varandas Ferreira

    (Algoritmi Research Center/Intelligent Systems Associate LAboratory (LASI), University of Minho, 4710-057 Braga, Portugal)

  • Géremi Gilson Dranka

    (Algoritmi Research Center/Intelligent Systems Associate LAboratory (LASI), University of Minho, 4710-057 Braga, Portugal
    Department of Electrical Engineering, Federal Technological University of Paraná (UTFPR), Pato Branco 85503-390, Brazil)

  • Dominik Gryboś

    (Department of Thermal and Fluid Flow Machines, Faculty of Energy and Fuels, AGH University of Krakow, 30-059 Kraków, Poland)

Abstract

As global energy demand continues to rise, integrating renewable energy sources (RES) into power systems has become increasingly important. However, the intermittent nature of RES, such as solar and wind, presents challenges for maintaining a stable energy supply. To address this issue, energy storage systems are essential. One promising technology is micro-compressed air energy storage (micro-CAES), which stores excess energy as compressed air and releases it when needed to balance supply and demand. This study investigates the integration of micro-CAES with RES in a 19-home microgrid in northern Portugal. The research aims to evaluate the effectiveness of a microgrid configuration that includes 100 kW of solar PV, 70 kW of wind power, and a 50 kWh micro-CAES system. Using real-world data on electricity consumption and local renewable potential, a simulation is conducted to assess the performance of this system. The findings reveal that this configuration can supply up to 68.8% of the annual energy demand, significantly reducing reliance on the external grid and enhancing the system’s resilience. These results highlight the potential of micro-CAES to improve the efficiency and sustainability of small-scale renewable energy systems, demonstrating its value as a key component in future energy solutions.

Suggested Citation

  • Jan Markowski & Jacek Leszczyński & Paula Fernanda Varandas Ferreira & Géremi Gilson Dranka & Dominik Gryboś, 2024. "Analysis of Electricity Supply and Demand Balance in Residential Microgrids Integrated with Micro-CAES in Northern Portugal," Energies, MDPI, vol. 17(19), pages 1-17, October.
  • Handle: RePEc:gam:jeners:v:17:y:2024:i:19:p:5005-:d:1494174
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/17/19/5005/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/17/19/5005/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Courtois, Nicolas & Najafiyazdi, Mostafa & Lotfalian, Reza & Boudreault, Richard & Picard, Mathieu, 2021. "Analytical expression for the evaluation of multi-stage adiabatic-compressed air energy storage (A-CAES) systems cycle efficiency," Applied Energy, Elsevier, vol. 288(C).
    2. Saadat, Mohsen & Shirazi, Farzad A. & Li, Perry Y., 2015. "Modeling and control of an open accumulator Compressed Air Energy Storage (CAES) system for wind turbines," Applied Energy, Elsevier, vol. 137(C), pages 603-616.
    3. Luo, Xing & Wang, Jihong & Dooner, Mark & Clarke, Jonathan, 2015. "Overview of current development in electrical energy storage technologies and the application potential in power system operation," Applied Energy, Elsevier, vol. 137(C), pages 511-536.
    4. Leszczyński, Jacek S. & Gryboś, Dominik & Markowski, Jan, 2023. "Analysis of optimal expansion dynamics in a reciprocating drive for a micro-CAES production system," Applied Energy, Elsevier, vol. 350(C).
    5. Ebrahimi, Mehdi & Carriveau, Rupp & Ting, David S.-K. & McGillis, Andrew, 2019. "Conventional and advanced exergy analysis of a grid connected underwater compressed air energy storage facility," Applied Energy, Elsevier, vol. 242(C), pages 1198-1208.
    6. Budt, Marcus & Wolf, Daniel & Span, Roland & Yan, Jinyue, 2016. "A review on compressed air energy storage: Basic principles, past milestones and recent developments," Applied Energy, Elsevier, vol. 170(C), pages 250-268.
    7. Zhang, Jingtao & Hosseini Zadeh, Amin & Kim, Seunghee, 2021. "Geomechanical and energy analysis on the small- and medium-scale CAES in salt domes," Energy, Elsevier, vol. 221(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Leszczyński, Jacek S. & Gryboś, Dominik & Markowski, Jan, 2023. "Analysis of optimal expansion dynamics in a reciprocating drive for a micro-CAES production system," Applied Energy, Elsevier, vol. 350(C).
    2. Meng, Hui & Wang, Meihong & Olumayegun, Olumide & Luo, Xiaobo & Liu, Xiaoyan, 2019. "Process design, operation and economic evaluation of compressed air energy storage (CAES) for wind power through modelling and simulation," Renewable Energy, Elsevier, vol. 136(C), pages 923-936.
    3. He, Yang & Chen, Haisheng & Xu, Yujie & Deng, Jianqiang, 2018. "Compression performance optimization considering variable charge pressure in an adiabatic compressed air energy storage system," Energy, Elsevier, vol. 165(PB), pages 349-359.
    4. Yang, Lichao & Cai, Zuansi & Li, Cai & He, Qingcheng & Ma, Yan & Guo, Chaobin, 2020. "Numerical investigation of cycle performance in compressed air energy storage in aquifers," Applied Energy, Elsevier, vol. 269(C).
    5. Guo, Huan & Xu, Yujie & Huang, Lujing & Zhu, Yilin & Liang, Qi & Chen, Haisheng, 2022. "Concise analytical solution and optimization of compressed air energy storage systems with thermal storage," Energy, Elsevier, vol. 258(C).
    6. Guo, Chaobin & Li, Cai & Zhang, Keni & Cai, Zuansi & Ma, Tianran & Maggi, Federico & Gan, Yixiang & El-Zein, Abbas & Pan, Zhejun & Shen, Luming, 2021. "The promise and challenges of utility-scale compressed air energy storage in aquifers," Applied Energy, Elsevier, vol. 286(C).
    7. Briola, Stefano & Di Marco, Paolo & Gabbrielli, Roberto & Riccardi, Juri, 2017. "Sensitivity analysis for the energy performance assessment of hybrid compressed air energy storage systems," Applied Energy, Elsevier, vol. 206(C), pages 1552-1563.
    8. He, Wei & Wang, Jihong, 2018. "Optimal selection of air expansion machine in Compressed Air Energy Storage: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 87(C), pages 77-95.
    9. Chen, Long Xiang & Xie, Mei Na & Zhao, Pan Pan & Wang, Feng Xiang & Hu, Peng & Wang, Dong Xiang, 2018. "A novel isobaric adiabatic compressed air energy storage (IA-CAES) system on the base of volatile fluid," Applied Energy, Elsevier, vol. 210(C), pages 198-210.
    10. Cheayb, Mohamad & Marin Gallego, Mylène & Tazerout, Mohand & Poncet, Sébastien, 2022. "A techno-economic analysis of small-scale trigenerative compressed air energy storage system," Energy, Elsevier, vol. 239(PA).
    11. Dib, Ghady & Haberschill, Philippe & Rullière, Romuald & Revellin, Rémi, 2021. "Modelling small-scale trigenerative advanced adiabatic compressed air energy storage for building application," Energy, Elsevier, vol. 237(C).
    12. Guo, Cong & Xu, Yujie & Zhang, Xinjing & Guo, Huan & Zhou, Xuezhi & Liu, Chang & Qin, Wei & Li, Wen & Dou, Binlin & Chen, Haisheng, 2017. "Performance analysis of compressed air energy storage systems considering dynamic characteristics of compressed air storage," Energy, Elsevier, vol. 135(C), pages 876-888.
    13. Fu, Xintao & Zhang, Yilun & Liu, Xu & Liu, Zhan, 2024. "Stable power supply system consisting of solar, wind and liquid carbon dioxide energy storage," Renewable Energy, Elsevier, vol. 221(C).
    14. Xu, Ying & Ren, Li & Zhang, Zhongping & Tang, Yuejin & Shi, Jing & Xu, Chen & Li, Jingdong & Pu, Dongsheng & Wang, Zhuang & Liu, Huajun & Chen, Lei, 2018. "Analysis of the loss and thermal characteristics of a SMES (Superconducting Magnetic Energy Storage) magnet with three practical operating conditions," Energy, Elsevier, vol. 143(C), pages 372-384.
    15. Li, Chengchen & Wang, Huanran & He, Xin & Zhang, Yan, 2022. "Experimental and thermodynamic investigation on isothermal performance of large-scaled liquid piston," Energy, Elsevier, vol. 249(C).
    16. Bravo, Rafael Rivelino Silva & De Negri, Victor Juliano & Oliveira, Amir Antonio Martins, 2018. "Design and analysis of a parallel hydraulic – pneumatic regenerative braking system for heavy-duty hybrid vehicles," Applied Energy, Elsevier, vol. 225(C), pages 60-77.
    17. He, Yang & MengWang, & Chen, Haisheng & Xu, Yujie & Deng, Jianqiang, 2021. "Thermodynamic research on compressed air energy storage system with turbines under sliding pressure operation," Energy, Elsevier, vol. 222(C).
    18. He, Wei & Wang, Jihong, 2017. "Feasibility study of energy storage by concentrating/desalinating water: Concentrated Water Energy Storage," Applied Energy, Elsevier, vol. 185(P1), pages 872-884.
    19. Llamas, Bernardo & Laín, Carlos & Castañeda, M. Cruz & Pous, Juan, 2018. "Mini-CAES as a reliable and novel approach to storing renewable energy in salt domes," Energy, Elsevier, vol. 144(C), pages 482-489.
    20. King, Marcus & Jain, Anjali & Bhakar, Rohit & Mathur, Jyotirmay & Wang, Jihong, 2021. "Overview of current compressed air energy storage projects and analysis of the potential underground storage capacity in India and the UK," Renewable and Sustainable Energy Reviews, Elsevier, vol. 139(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:17:y:2024:i:19:p:5005-:d:1494174. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.