IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v17y2024i19p4991-d1493226.html
   My bibliography  Save this article

Energy Flux Method for Wave Energy Converters

Author

Listed:
  • Gabriel Thomas Scarlett

    (Mocean Energy Ltd., Murchison House, King’s Buildings, Edinburgh EH9 3BF, UK)

  • James Cameron McNatt

    (Mocean Energy Ltd., Murchison House, King’s Buildings, Edinburgh EH9 3BF, UK)

  • Alan Henry

    (Rockall Research Ltd., Sutton, D13 Dublin, Ireland)

  • Abel Arredondo-Galeana

    (Department of Naval Architecture, Ocean & Marine Engineering, University of Strathclyde, Glasgow G4 0LZ, UK)

Abstract

Hydrodynamic tools reveal information as to the behaviour of a device in the presence of waves but provide little information on how to improve or optimise the device. With no recent work on the transfer of power (energy flux) from a wave field through the body surface of a wave energy converter (WEC), we introduce the energy flux method to map the flow of power. The method is used to develop an open-source tool to visualise the energy flux density on a WEC body surface. This energy flux surface can also be used to compute the total power capture by integrating over the surface. We apply the tool to three WEC classes: a heaving cylinder, a twin-hulled hinged barge, and pitching surge devices. Using the flux surfaces, we investigate power efficiency in terms of power absorbed to power radiated. We visualise the hydrodynamic consequence of sub-optimal damping. Then, for two pitching surge devices with similar resonant peaks, we reveal why one device has a reduced power performance in a wave spectrum compared to the other. The results show the effectiveness of the energy flux method to predict power capture compared to motion-based methods and highlight the importance of assessing the flux of energy in WECs subjected to different damping strategies. Importantly, the tool can be adopted for a wide range of applications, from geometry optimisation and hydrodynamic efficiency assessment to structural design.

Suggested Citation

  • Gabriel Thomas Scarlett & James Cameron McNatt & Alan Henry & Abel Arredondo-Galeana, 2024. "Energy Flux Method for Wave Energy Converters," Energies, MDPI, vol. 17(19), pages 1-15, October.
  • Handle: RePEc:gam:jeners:v:17:y:2024:i:19:p:4991-:d:1493226
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/17/19/4991/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/17/19/4991/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Thomas Scarlett, Gabriel & Viola, Ignazio Maria, 2020. "Unsteady hydrodynamics of tidal turbine blades," Renewable Energy, Elsevier, vol. 146(C), pages 843-855.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhu, Chengyong & Qiu, Yingning & Wang, Tongguang, 2021. "Dynamic stall of the wind turbine airfoil and blade undergoing pitch oscillations: A comparative study," Energy, Elsevier, vol. 222(C).
    2. Pisetta, Gabriele & Le Mestre, Robin & Viola, Ignazio Maria, 2022. "Morphing blades for tidal turbines: A theoretical study," Renewable Energy, Elsevier, vol. 183(C), pages 802-819.
    3. Gambuzza, Stefano & Pisetta, Gabriele & Davey, Thomas & Steynor, Jeffrey & Viola, Ignazio Maria, 2023. "Model-scale experiments of passive pitch control for tidal turbines," Renewable Energy, Elsevier, vol. 205(C), pages 10-29.
    4. Manolesos, M. & Chng, L. & Kaufmann, N. & Ouro, P. & Ntouras, D. & Papadakis, G., 2023. "Using vortex generators for flow separation control on tidal turbine profiles and blades," Renewable Energy, Elsevier, vol. 205(C), pages 1025-1039.
    5. Lam, Raymond & Dubon, Sergio Lopez & Sellar, Brian & Vogel, Christopher & Davey, Thomas & Steynor, Jeffrey, 2023. "Temporal and spatial characterisation of tidal blade load variation for structural fatigue testing," Renewable Energy, Elsevier, vol. 208(C), pages 665-678.
    6. Perez, Larissa & Cossu, Remo & Grinham, Alistair & Penesis, Irene, 2021. "Seasonality of turbulence characteristics and wave-current interaction in two prospective tidal energy sites," Renewable Energy, Elsevier, vol. 178(C), pages 1322-1336.
    7. Perez, Larissa & Cossu, Remo & Grinham, Alistair & Penesis, Irene, 2022. "An investigation of tidal turbine performance and loads under various turbulence conditions using Blade Element Momentum theory and high-frequency field data acquired in two prospective tidal energy s," Renewable Energy, Elsevier, vol. 201(P1), pages 928-937.
    8. Perez, Larissa & Cossu, Remo & Grinham, Alistair & Penesis, Irene, 2022. "Tidal turbine performance and loads for various hub heights and wave conditions using high-frequency field measurements and Blade Element Momentum theory," Renewable Energy, Elsevier, vol. 200(C), pages 1548-1560.
    9. Arturo Ortega & Joseph Praful Tomy & Jonathan Shek & Stephane Paboeuf & David Ingram, 2020. "An Inter-Comparison of Dynamic, Fully Coupled, Electro-Mechanical, Models of Tidal Turbines," Energies, MDPI, vol. 13(20), pages 1-19, October.
    10. Cossu, Remo & Penesis, Irene & Nader, Jean-Roch & Marsh, Philip & Perez, Larissa & Couzi, Camille & Grinham, Alistair & Osman, Peter, 2021. "Tidal energy site characterisation in a large tidal channel in Banks Strait, Tasmania, Australia," Renewable Energy, Elsevier, vol. 177(C), pages 859-870.
    11. Maria Cristina Morani & Mariana Simão & Ignac Gazur & Rui S. Santos & Armando Carravetta & Oreste Fecarotta & Helena M. Ramos, 2022. "Pressure Drop and Energy Recovery with a New Centrifugal Micro-Turbine: Fundamentals and Application in a Real WDN," Energies, MDPI, vol. 15(4), pages 1-25, February.
    12. Alyona Naberezhnykh & David Ingram & Ian Ashton & Joel Culina, 2023. "How Applicable Are Turbulence Assumptions Used in the Tidal Energy Industry?," Energies, MDPI, vol. 16(4), pages 1-21, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:17:y:2024:i:19:p:4991-:d:1493226. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.