IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v17y2024i19p4928-d1490798.html
   My bibliography  Save this article

Car Sales, Fuel Economy and Decarbonization in Mexico

Author

Listed:
  • David Bonilla

    (Instituto de Investigaciones Económicas, Universidad Nacional Autónoma de México, Circuito Mario de la Cueva, Ciudad de la Investigación en Humanidades, C.U., Mexico City 04510, Mexico)

  • David Banister

    (Transport Studies Unit, School of Geography and Environment, University of Oxford, S. Parks Rd., Oxford OX1 3QY, UK)

  • Adriana Caballero Castrillo

    (Conahcyt, Av. Insurgentes Sur, 1582 Col Crédito Constructor, C.P., Mexico City 03940, Mexico)

Abstract

The car market in Mexico has undergone substantial change over the last twenty years, as sales have increased dramatically and as policy measures have been introduced to improve fuel economy so that decarbonization targets can be achieved. The argument presented in this paper is that overall fuel economy is driven by vehicle sales and the fuel economy standards imposed. In addition, this picture is complicated by the purchasing preferences of buyers, and this might reduce the effectiveness of the policy measures introduced. A case study approach allows analysis of the shifts in transport policy (2003–2020) to be undertaken by linking the fuel consumption of cars (L/100 km) to the purchasing patterns of consumers, and from this estimate the levels of CO 2 emissions. From the empirical analysis, it is found that, although there have been fuel economy gains every year, this is countered by (a) increasing sales of SUVs, and (b) a car market that is increasingly being dominated by larger cars. The current fuel standards are not sufficient to control the continued growth in fuel consumption, and levels of carbon emissions are continuing to increase. In conclusion, tighter emissions standards are needed, together with stronger governance structures and a range of further policy measures to improve car efficiencies and limit growth of the use of larger vehicles.

Suggested Citation

  • David Bonilla & David Banister & Adriana Caballero Castrillo, 2024. "Car Sales, Fuel Economy and Decarbonization in Mexico," Energies, MDPI, vol. 17(19), pages 1-26, October.
  • Handle: RePEc:gam:jeners:v:17:y:2024:i:19:p:4928-:d:1490798
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/17/19/4928/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/17/19/4928/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Philippe Aghion & Antoine Dechezleprêtre & David Hémous & Ralf Martin & John Van Reenen, 2016. "Carbon Taxes, Path Dependency, and Directed Technical Change: Evidence from the Auto Industry," Journal of Political Economy, University of Chicago Press, vol. 124(1), pages 1-51.
    2. Kenneth A. Small & Kurt Van Dender, 2007. "Fuel Efficiency and Motor Vehicle Travel: The Declining Rebound Effect," The Energy Journal, International Association for Energy Economics, vol. 0(Number 1), pages 25-52.
    3. Goulder, Lawrence H. & Mathai, Koshy, 2000. "Optimal CO2 Abatement in the Presence of Induced Technological Change," Journal of Environmental Economics and Management, Elsevier, vol. 39(1), pages 1-38, January.
    4. Ian W. H. Parry & Margaret Walls & Winston Harrington, 2007. "Automobile Externalities and Policies," Journal of Economic Literature, American Economic Association, vol. 45(2), pages 373-399, June.
    5. David Bonilla & Timothy Foxon, 2009. "Demand for New Car Fuel Economy in the UK, 1970-2005," Journal of Transport Economics and Policy, University of Bath, vol. 43(1), pages 55-83, January.
    6. Knittel, Christopher R. & Tanaka, Shinsuke, 2021. "Fuel economy and the price of gasoline: Evidence from fueling-level micro data," Journal of Public Economics, Elsevier, vol. 202(C).
    7. Doraszelski, Ulrich, 2004. "Innovations, improvements, and the optimal adoption of new technologies," Journal of Economic Dynamics and Control, Elsevier, vol. 28(7), pages 1461-1480, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Rik L. Rozendaal & Herman R. J. Vollebergh, 2021. "Policy-Induced Innovation in Clean Technologies: Evidence from the Car Market," CESifo Working Paper Series 9422, CESifo.
    2. Gustavo A. Marrero & Jesús Rodríguez-López & Rosa Marina González, 2020. "Car usage, $${\text {CO}}_{2}$$CO2 emissions and fuel taxes in Europe," SERIEs: Journal of the Spanish Economic Association, Springer;Spanish Economic Association, vol. 11(2), pages 203-241, June.
    3. Proost, Stef & Van Dender, Kurt, 2012. "Energy and environment challenges in the transport sector," Economics of Transportation, Elsevier, vol. 1(1), pages 77-87.
    4. Shanjun Li & Joshua Linn & Erich Muehlegger, 2014. "Gasoline Taxes and Consumer Behavior," American Economic Journal: Economic Policy, American Economic Association, vol. 6(4), pages 302-342, November.
    5. Zohal Hessami, 2016. "How Do Voters React to Complex Choices in a Direct Democracy? Evidence from Switzerland," Kyklos, Wiley Blackwell, vol. 69(2), pages 263-293, May.
    6. Aalbers, Rob & Shestalova, Victoria & Kocsis, Viktória, 2013. "Innovation policy for directing technical change in the power sector," Energy Policy, Elsevier, vol. 63(C), pages 1240-1250.
    7. Gregory Casey, 2024. "Energy Efficiency and Directed Technical Change: Implications for Climate Change Mitigation," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 91(1), pages 192-228.
    8. Elizabeth Baldwin, Yongyang Cai, Karlygash Kuralbayeva, 2018. "To build or not to build? Capital stocks and climate policy," GRI Working Papers 290, Grantham Research Institute on Climate Change and the Environment.
    9. Takahiko Kiso, 2019. "Evaluating New Policy Instruments of the Corporate Average Fuel Economy Standards: Footprint, Credit Transferring, and Credit Trading," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 72(2), pages 445-476, February.
    10. Whistance, Jarrett & Thompson, Wyatt, 2014. "The role of CAFE standards and alternative-fuel vehicle production credits in U.S. biofuels markets," Energy Policy, Elsevier, vol. 74(C), pages 147-157.
    11. Mathias Reynaert, 2021. "Abatement Strategies and the Cost of Environmental Regulation: Emission Standards on the European Car Market," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 88(1), pages 454-488.
    12. Kilian, Lutz & Zhou, Xiaoqing, 2024. "Heterogeneity in the pass-through from oil to gasoline prices: A new instrument for estimating the price elasticity of gasoline demand," Journal of Public Economics, Elsevier, vol. 232(C).
    13. Maogang Tang & Silu Cheng & Wenqing Guo & Weibiao Ma & Fengxia Hu, 2023. "Relationship between carbon emission trading schemes and companies’ total factor productivity: evidence from listed companies in China," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 25(10), pages 11735-11767, October.
    14. Yang, Jun & Yang, Dingjian & Cheng, Jixin, 2024. "The non-rivalry of data, directed technical change and the environment: A theoretical study incorporating data as a production factor," Economic Analysis and Policy, Elsevier, vol. 82(C), pages 417-448.
    15. Chao Wei & Shanjun Li, 2014. "The Cost of Greening Stimulus: A Dynamic Discrete Choice Analysis of Vehicle Scrappage Programs," Working Papers 2014-12, The George Washington University, Institute for International Economic Policy.
    16. Philippe Barla & Bernard Lamonde & Luis Miranda-Moreno & Nathalie Boucher, 2009. "Traveled distance, stock and fuel efficiency of private vehicles in Canada: price elasticities and rebound effect," Transportation, Springer, vol. 36(4), pages 389-402, July.
    17. James M. Sallee, 2019. "Pigou Creates Losers: On the Implausibility of Achieving Pareto Improvements from Efficiency-Enhancing Policies," NBER Working Papers 25831, National Bureau of Economic Research, Inc.
    18. Antung Anthony Liu & Hiroaki Yamagami, 2018. "Environmental Policy in the Presence of Induced Technological Change," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 71(1), pages 279-299, September.
    19. Tol, Richard S.J., 2017. "The structure of the climate debate," Energy Policy, Elsevier, vol. 104(C), pages 431-438.
    20. Allcott, Hunt & Mullainathan, Sendhil & Taubinsky, Dmitry, 2014. "Energy policy with externalities and internalities," Journal of Public Economics, Elsevier, vol. 112(C), pages 72-88.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:17:y:2024:i:19:p:4928-:d:1490798. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.