IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v17y2024i19p4836-d1486777.html
   My bibliography  Save this article

The Role of Fully Coupled Computational Fluid Dynamics for Floating Wind Applications: A Review

Author

Listed:
  • Hannah Darling

    (Mechanical and Industrial Engineering Department, University of Massachusetts, Amherst, MA 01003, USA)

  • David P. Schmidt

    (Mechanical and Industrial Engineering Department, University of Massachusetts, Amherst, MA 01003, USA)

Abstract

Following the operational success of the Hywind Scotland, Kincardine, WindFloat Atlantic, and Hywind Tampen floating wind farms, the floating offshore wind industry is expected to play a critical role in the global clean energy transition. However, there is still significant work needed in optimizing the design and implementation of floating offshore wind turbines (FOWTs) to justify the widespread adoption of this technology and ensure that it is commercially viable compared to other more-established renewable energy technologies. The present review explores the application of fully coupled computational fluid dynamics (CFD) modeling approaches for achieving the cost reductions and design confidence necessary for floating wind to fully establish itself as a reliable and practical renewable energy technology. In particular, using these models to better understand and predict the highly nonlinear and integrated environmental loading on FOWT systems and the resulting dynamic responses prior to full-scale implementation is of increased importance.

Suggested Citation

  • Hannah Darling & David P. Schmidt, 2024. "The Role of Fully Coupled Computational Fluid Dynamics for Floating Wind Applications: A Review," Energies, MDPI, vol. 17(19), pages 1-32, September.
  • Handle: RePEc:gam:jeners:v:17:y:2024:i:19:p:4836-:d:1486777
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/17/19/4836/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/17/19/4836/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Froese, Gabrielle & Ku, Shan Yu & Kheirabadi, Ali C. & Nagamune, Ryozo, 2022. "Optimal layout design of floating offshore wind farms," Renewable Energy, Elsevier, vol. 190(C), pages 94-102.
    2. Cao, Lichao & Ge, Mingwei & Gao, Xiaoxia & Du, Bowen & Li, Baoliang & Huang, Zhi & Liu, Yongqian, 2022. "Wind farm layout optimization to minimize the wake induced turbulence effect on wind turbines," Applied Energy, Elsevier, vol. 323(C).
    3. Huang, Haoda & Liu, Qingsong & Yue, Minnan & Miao, Weipao & Wang, Peilin & Li, Chun, 2023. "Fully coupled aero-hydrodynamic analysis of a biomimetic fractal semi-submersible floating offshore wind turbine under wind-wave excitation conditions," Renewable Energy, Elsevier, vol. 203(C), pages 280-300.
    4. Mills, Sarah Banas & Bessette, Douglas & Smith, Hannah, 2019. "Exploring landowners’ post-construction changes in perceptions of wind energy in Michigan," Land Use Policy, Elsevier, vol. 82(C), pages 754-762.
    5. Schallenberg-Rodríguez, Julieta & García Montesdeoca, Nuria, 2018. "Spatial planning to estimate the offshore wind energy potential in coastal regions and islands. Practical case: The Canary Islands," Energy, Elsevier, vol. 143(C), pages 91-103.
    6. Tran, Thanh Toan & Kim, Dong-Hyun, 2016. "Fully coupled aero-hydrodynamic analysis of a semi-submersible FOWT using a dynamic fluid body interaction approach," Renewable Energy, Elsevier, vol. 92(C), pages 244-261.
    7. Lozon, Ericka & Hall, Matthew, 2023. "Coupled loads analysis of a novel shared-mooring floating wind farm," Applied Energy, Elsevier, vol. 332(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Huang, Chaoneng & Wang, Li & Huang, Qian & Song, Dongran & Yang, Jian & Dong, Mi & Joo, Young Hoo & Duić, Neven, 2025. "Bi-level multi-objective optimization framework for wake escape in floating offshore wind farm," Applied Energy, Elsevier, vol. 377(PD).
    2. Mohammad Barooni & Turaj Ashuri & Deniz Velioglu Sogut & Stephen Wood & Shiva Ghaderpour Taleghani, 2022. "Floating Offshore Wind Turbines: Current Status and Future Prospects," Energies, MDPI, vol. 16(1), pages 1-28, December.
    3. Hogan, Jessica L. & Warren, Charles R. & Simpson, Michael & McCauley, Darren, 2022. "What makes local energy projects acceptable? Probing the connection between ownership structures and community acceptance," Energy Policy, Elsevier, vol. 171(C).
    4. Choe, Do-Eun & Ramezani, Mahyar, 2025. "Fragility estimation for performance-based structural design of floating offshore wind turbine components," Reliability Engineering and System Safety, Elsevier, vol. 253(C).
    5. Hübner, Gundula & Leschinger, Valentin & Müller, Florian J.Y. & Pohl, Johannes, 2023. "Broadening the social acceptance of wind energy – An Integrated Acceptance Model," Energy Policy, Elsevier, vol. 173(C).
    6. Zeng, Xinmeng & Shao, Yanlin & Feng, Xingya & Xu, Kun & Jin, Ruijia & Li, Huajun, 2024. "Nonlinear hydrodynamics of floating offshore wind turbines: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 191(C).
    7. Tian, Sheng & Liu, Yongqian & Tian, Xinshou & Li, Baoliang & Chi, Yongning, 2024. "A wind farm control strategy for frequency regulation reserve: Optimize wake loss and frequency support capability," Renewable Energy, Elsevier, vol. 237(PB).
    8. Zhou, Yang & Xiao, Qing & Liu, Yuanchuan & Incecik, Atilla & Peyrard, Christophe & Wan, Decheng & Pan, Guang & Li, Sunwei, 2022. "Exploring inflow wind condition on floating offshore wind turbine aerodynamic characterisation and platform motion prediction using blade resolved CFD simulation," Renewable Energy, Elsevier, vol. 182(C), pages 1060-1079.
    9. Mohammed Ifkirne & Houssam El Bouhi & Siham Acharki & Quoc Bao Pham & Abdelouahed Farah & Nguyen Thi Thuy Linh, 2022. "Multi-Criteria GIS-Based Analysis for Mapping Suitable Sites for Onshore Wind Farms in Southeast France," Land, MDPI, vol. 11(10), pages 1-26, October.
    10. Guo, Yize & Wang, Xiaodong & Mei, Yuanhang & Ye, Zhaoliang & Guo, Xiaojiang, 2022. "Effect of coupled platform pitch-surge motions on the aerodynamic characters of a horizontal floating offshore wind turbine," Renewable Energy, Elsevier, vol. 196(C), pages 278-297.
    11. Gao, Xianhui & Wang, Sheng & Sun, Ying & Zhai, Junyi & Chen, Nan & Zhang, Xiao-Ping, 2024. "Low-carbon energy scheduling for integrated energy systems considering offshore wind power hydrogen production and dynamic hydrogen doping strategy," Applied Energy, Elsevier, vol. 376(PA).
    12. Wang, Jianzhou & Huang, Xiaojia & Li, Qiwei & Ma, Xuejiao, 2018. "Comparison of seven methods for determining the optimal statistical distribution parameters: A case study of wind energy assessment in the large-scale wind farms of China," Energy, Elsevier, vol. 164(C), pages 432-448.
    13. Xu, Zongyuan & Gao, Xiaoxia & Zhang, Huanqiang & Lv, Tao & Han, Zhonghe & Zhu, Xiaoxun & Wang, Yu, 2023. "Analysis of the anisotropy aerodynamic characteristics of downstream wind turbine considering the 3D wake expansion based on coupling method," Energy, Elsevier, vol. 263(PD).
    14. Lu Wang & Amy Robertson & Jason Jonkman & Yi-Hsiang Yu, 2020. "Uncertainty Assessment of CFD Investigation of the Nonlinear Difference-Frequency Wave Loads on a Semisubmersible FOWT Platform," Sustainability, MDPI, vol. 13(1), pages 1-25, December.
    15. Yanez-Rosales, Pablo & Río-Gamero, B. Del & Schallenberg-Rodríguez, Julieta, 2024. "Rationale for selecting the most suitable areas for offshore wind energy farms in isolated island systems. Case study: Canary Islands," Energy, Elsevier, vol. 307(C).
    16. Huang, Haoda & Liu, Qingsong & Yue, Minnan & Miao, Weipao & Wang, Peilin & Li, Chun, 2023. "Fully coupled aero-hydrodynamic analysis of a biomimetic fractal semi-submersible floating offshore wind turbine under wind-wave excitation conditions," Renewable Energy, Elsevier, vol. 203(C), pages 280-300.
    17. Wang, Xinbao & Cai, Chang & Cai, Shang-Gui & Wang, Tengyuan & Wang, Zekun & Song, Juanjuan & Rong, Xiaomin & Li, Qing'an, 2023. "A review of aerodynamic and wake characteristics of floating offshore wind turbines," Renewable and Sustainable Energy Reviews, Elsevier, vol. 175(C).
    18. Tasir Khan & Ishfaq Ahmad & Yejuan Wang & Muhammad Salam & Amina Shahzadi & Masooma Batool, 2024. "Comparison approach for wind resource assessment to determine the most precise approach," Energy & Environment, , vol. 35(3), pages 1315-1338, May.
    19. Naghmeh Akbari Zadeh & Peter Ryan & David M. Kennedy & Fergal O’Rourke, 2024. "Numerical Methodologies for the Analysis of Horizontal-Axis Floating Offshore Wind Turbines (F-HAWTs): A State-of-the-Art Review," Energies, MDPI, vol. 18(1), pages 1-34, December.
    20. Brooks, Sam & Mahmood, Minhal & Roy, Rajkumar & Manolesos, Marinos & Salonitis, Konstantinos, 2023. "Self-reconfiguration simulations of turbines to reduce uneven farm degradation," Renewable Energy, Elsevier, vol. 206(C), pages 1301-1314.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:17:y:2024:i:19:p:4836-:d:1486777. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.