IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v377y2025ipds0306261924020956.html
   My bibliography  Save this article

Bi-level multi-objective optimization framework for wake escape in floating offshore wind farm

Author

Listed:
  • Huang, Chaoneng
  • Wang, Li
  • Huang, Qian
  • Song, Dongran
  • Yang, Jian
  • Dong, Mi
  • Joo, Young Hoo
  • Duić, Neven

Abstract

Due to the significant motion of wind turbines (WTs) during operation, the coupling of wake effect in floating offshore wind farm (FOWF) is intensified, making the optimization problem combining layout and operation challenging. To address this issue, a bi-level multi-objective intelligent optimization framework for FOWF is proposed. Based on the interaction among operation control, force-induced motion and wake effect, an efficient repositioning model that considers the aerodynamic effect on moveable WT is established. On this basis, a generalized wake control method called “Wake Escape” is defined, taking into account the relationship between optimization variables and objectives in layout design and operation control. To solve the bi-level multi-objective optimization problem of FOWF, FOWFBi-Mopt platform is constructed, on which multi-objective particle swarm optimization and equilibrium optimizer are developed. Additionally, the key parameters and dimensional characteristics are integrated between the layout and operation, facilitating the coordination process of optimization objectives by associating the inner and outer-level algorithms. The simulation results demonstrate that the proposed bi-level optimization framework effectively mitigates the adverse effect of moveable WTs from both layout and operation. Diverse solutions are obtained from Pareto front, achieving comprehensive optimization of FOWF, with the maximum reduction of 1.183 % in the levelized production cost.

Suggested Citation

  • Huang, Chaoneng & Wang, Li & Huang, Qian & Song, Dongran & Yang, Jian & Dong, Mi & Joo, Young Hoo & Duić, Neven, 2025. "Bi-level multi-objective optimization framework for wake escape in floating offshore wind farm," Applied Energy, Elsevier, vol. 377(PD).
  • Handle: RePEc:eee:appene:v:377:y:2025:i:pd:s0306261924020956
    DOI: 10.1016/j.apenergy.2024.124712
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261924020956
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2024.124712?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Froese, Gabrielle & Ku, Shan Yu & Kheirabadi, Ali C. & Nagamune, Ryozo, 2022. "Optimal layout design of floating offshore wind farms," Renewable Energy, Elsevier, vol. 190(C), pages 94-102.
    2. Srikanth Bashetty & Selahattin Ozcelik, 2021. "Review on Dynamics of Offshore Floating Wind Turbine Platforms," Energies, MDPI, vol. 14(19), pages 1-30, September.
    3. Shu, Tong & Song, Dongran & Hoon Joo, Young, 2022. "Decentralised optimisation for large offshore wind farms using a sparsified wake directed graph," Applied Energy, Elsevier, vol. 306(PA).
    4. Han, Chenlu & Nagamune, Ryozo, 2020. "Platform position control of floating wind turbines using aerodynamic force," Renewable Energy, Elsevier, vol. 151(C), pages 896-907.
    5. Lozon, Ericka & Hall, Matthew, 2023. "Coupled loads analysis of a novel shared-mooring floating wind farm," Applied Energy, Elsevier, vol. 332(C).
    6. F. Guenab & P. Weber & D. Theilliol & Y.M. Zhang, 2011. "Design of a fault tolerant control system incorporating reliability analysis and dynamic behaviour constraints," International Journal of Systems Science, Taylor & Francis Journals, vol. 42(1), pages 219-233.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zeng, Xinmeng & Shao, Yanlin & Feng, Xingya & Xu, Kun & Jin, Ruijia & Li, Huajun, 2024. "Nonlinear hydrodynamics of floating offshore wind turbines: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 191(C).
    2. Hannah Darling & David P. Schmidt, 2024. "The Role of Fully Coupled Computational Fluid Dynamics for Floating Wind Applications: A Review," Energies, MDPI, vol. 17(19), pages 1-32, September.
    3. Kumarasamy Palanimuthu & Ganesh Mayilsamy & Ameerkhan Abdul Basheer & Seong-Ryong Lee & Dongran Song & Young Hoon Joo, 2022. "A Review of Recent Aerodynamic Power Extraction Challenges in Coordinated Pitch, Yaw, and Torque Control of Large-Scale Wind Turbine Systems," Energies, MDPI, vol. 15(21), pages 1-27, November.
    4. Gao, Xianhui & Wang, Sheng & Sun, Ying & Zhai, Junyi & Chen, Nan & Zhang, Xiao-Ping, 2024. "Low-carbon energy scheduling for integrated energy systems considering offshore wind power hydrogen production and dynamic hydrogen doping strategy," Applied Energy, Elsevier, vol. 376(PA).
    5. Truong, Hoai Vu Anh & Dang, Tri Dung & Vo, Cong Phat & Ahn, Kyoung Kwan, 2022. "Active control strategies for system enhancement and load mitigation of floating offshore wind turbines: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 170(C).
    6. Brooks, Sam & Mahmood, Minhal & Roy, Rajkumar & Manolesos, Marinos & Salonitis, Konstantinos, 2023. "Self-reconfiguration simulations of turbines to reduce uneven farm degradation," Renewable Energy, Elsevier, vol. 206(C), pages 1301-1314.
    7. Duan, Guiyue & Gattari, Daniele & Porté-Agel, Fernando, 2025. "Theoretical and experimental study on power performance and wake characteristics of a floating wind turbine under pitch motion," Applied Energy, Elsevier, vol. 378(PA).
    8. Shu, Tong & Song, Dongran & Joo, Young Hoon, 2022. "Non-centralised coordinated optimisation for maximising offshore wind farm power via a sparse communication architecture," Applied Energy, Elsevier, vol. 324(C).
    9. Yang Ni & Bin Peng & Jiayao Wang & Farshad Golnary & Wei Li, 2023. "A Short Review on the Time-Domain Numerical Simulations for Structural Responses in Horizontal-Axis Offshore Wind Turbines," Sustainability, MDPI, vol. 15(24), pages 1-19, December.
    10. Huang, Zishuo & Wu, Wenchuan, 2024. "An efficient solution for large offshore wind farm power optimization with the Porté-Agel wake model: Optimality and efficiency," Energy, Elsevier, vol. 306(C).
    11. Nicole Mendoza & Amy Robertson & Alan Wright & Jason Jonkman & Lu Wang & Roger Bergua & Tri Ngo & Tuhin Das & Mohammad Odeh & Kazi Mohsin & Francesc Fabregas Flavia & Benjamin Child & Galih Bangga & M, 2022. "Verification and Validation of Model-Scale Turbine Performance and Control Strategies for the IEA Wind 15 MW Reference Wind Turbine," Energies, MDPI, vol. 15(20), pages 1-25, October.
    12. Ramon Varghese & Vikram Pakrashi & Subhamoy Bhattacharya, 2022. "A Compendium of Formulae for Natural Frequencies of Offshore Wind Turbine Structures," Energies, MDPI, vol. 15(8), pages 1-31, April.
    13. Hongxu Zhao & Xiang Wu & Zhou Zhou, 2024. "Exploring Motion Stability of a Novel Semi-Submersible Platform for Offshore Wind Turbines," Energies, MDPI, vol. 17(10), pages 1-15, May.
    14. Wang, Yu & Wei, Shanbi & Yang, Wei & Chai, Yi, 2023. "Adaptive economic predictive control for offshore wind farm active yaw considering generation uncertainty," Applied Energy, Elsevier, vol. 351(C).
    15. Yang, Shanghui & Deng, Xiaowei & Yang, Kun, 2024. "Machine-learning-based wind farm optimization through layout design and yaw control," Renewable Energy, Elsevier, vol. 224(C).
    16. Centeno-Telleria, Manu & Yue, Hong & Carrol, James & Penalba, Markel & Aizpurua, Jose I., 2024. "Impact of operations and maintenance on the energy production of floating offshore wind farms across the North Sea and the Iberian Peninsula," Renewable Energy, Elsevier, vol. 224(C).
    17. Cao, Shugang & Cheng, Youliang & Duan, Jinlong & Li, Jinyuan & Wang, Yu, 2024. "Experimental study of a semi-submersible floating wind turbine with aquaculture cages under combined wind and irregular waves," Energy, Elsevier, vol. 306(C).
    18. Ren, Yajun & Shi, Wei & Venugopal, Vengatesan & Zhang, Lixian & Li, Xin, 2024. "Experimental study of tendon failure analysis for a TLP floating offshore wind turbine," Applied Energy, Elsevier, vol. 358(C).
    19. Javier López-Queija & Eider Robles & Jose Ignacio Llorente & Imanol Touzon & Joseba López-Mendia, 2022. "A Simplified Modeling Approach of Floating Offshore Wind Turbines for Dynamic Simulations," Energies, MDPI, vol. 15(6), pages 1-16, March.
    20. Pustina, L. & Serafini, J. & Pasquali, C. & Solero, L. & Lidozzi, A. & Gennaretti, M., 2023. "A novel resonant controller for sea-induced rotor blade vibratory loads reduction on floating offshore wind turbines," Renewable and Sustainable Energy Reviews, Elsevier, vol. 173(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:377:y:2025:i:pd:s0306261924020956. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.