IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v17y2024i18p4605-d1477746.html
   My bibliography  Save this article

Effect of Heating Rate on the Pyrolysis Behavior and Kinetics of Coconut Residue and Activated Carbon: A Comparative Study

Author

Listed:
  • Inamullah Mian

    (Key Laboratory of Coal Clean Conversion and Chemical Process Autonomous Region, College of Chemistry and Chemical Engineering, Xinjiang University, Urumqi 830000, China
    State Key Laboratory of Coal Combustion, School of Energy and Power Engineering, Huazhong University, Wuhan 430074, China)

  • Noor Rehman

    (Department of Chemistry, Shaheed Benazir Bhutto University Sheringal, Dir Upper 18000, Khyber Pakhtunkhwa, Pakistan)

  • Xian Li

    (Key Laboratory of Coal Clean Conversion and Chemical Process Autonomous Region, College of Chemistry and Chemical Engineering, Xinjiang University, Urumqi 830000, China
    State Key Laboratory of Coal Combustion, School of Energy and Power Engineering, Huazhong University, Wuhan 430074, China)

  • Hidayat Ullah

    (Department of Chemistry, Shaheed Benazir Bhutto University Sheringal, Dir Upper 18000, Khyber Pakhtunkhwa, Pakistan)

  • Abbas Khan

    (Department of Chemistry, Abdul Wali Khan University, Mardan 23200, Khyber Pakhtunkhwa, Pakistan)

  • Chaejin Choi

    (Program in Environmental and Polymer Engineering, Graduate School of INHA University, 100 Inha-ro, Michuhol-gu, Incheon 22212, Republic of Korea)

  • Changseok Han

    (Program in Environmental and Polymer Engineering, Graduate School of INHA University, 100 Inha-ro, Michuhol-gu, Incheon 22212, Republic of Korea
    Department of Environmental Engineering, INHA University, 100 Inha-ro, Michuhol-gu, Incheon 22212, Republic of Korea)

Abstract

The pyrolysis process of coconut residue and the activated carbon was investigated using thermogravimetric analysis in the range of 25 to 900 °C, with three altered heating rates: 3, 5, and 10 °C/min. The results of the thermal decomposition showed that it occurred in three distinct phases: dehydration, active pyrolysis, and passive pyrolysis. The derivative thermogravimetric analysis indicated that increasing the heating rate led to a shift in the maximum weight loss rate towards higher temperatures. To better understand the kinetics constraints, the Coats–Redfern method was applied to determine the activation energy ( Ea ) and the frequency factor ( A ). The activation energies for the pyrolysis process varied between 159.57 and 177.45 kJ/mol for RCR and from 132.62 to 147.1 kJ/mol for ACCR at different heating rates. Additionally, the physical properties of the samples were investigated using techniques like scanning electron microscopy and the Brunauer–Emmett–Teller surface analysis. The findings of the study demonstrated that the activation energies of the activated carbon were lower than those of the original biomass. Furthermore, the activation energy values achieved from the D1–D4 models were considered reliable, indicating that the D model was more suitable compared to other models for describing the pyrolysis process and predicting its kinetics.

Suggested Citation

  • Inamullah Mian & Noor Rehman & Xian Li & Hidayat Ullah & Abbas Khan & Chaejin Choi & Changseok Han, 2024. "Effect of Heating Rate on the Pyrolysis Behavior and Kinetics of Coconut Residue and Activated Carbon: A Comparative Study," Energies, MDPI, vol. 17(18), pages 1-11, September.
  • Handle: RePEc:gam:jeners:v:17:y:2024:i:18:p:4605-:d:1477746
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/17/18/4605/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/17/18/4605/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Bach, Quang-Vu & Tran, Khanh-Quang & Skreiberg, Øyvind & Trinh, Thuat T., 2015. "Effects of wet torrefaction on pyrolysis of woody biomass fuels," Energy, Elsevier, vol. 88(C), pages 443-456.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jaime Martín-Pascual & Joaquín Jódar & Miguel L. Rodríguez & Montserrat Zamorano, 2020. "Determination of the Optimal Operative Conditions for the Torrefaction of Olive Waste Biomass," Sustainability, MDPI, vol. 12(16), pages 1-11, August.
    2. Kostyniuk, Andrii & Likozar, Blaž, 2024. "Wet torrefaction of biomass waste into high quality hydrochar and value-added liquid products using different zeolite catalysts," Renewable Energy, Elsevier, vol. 227(C).
    3. Li, Jingjing & Dou, Binlin & Zhang, Hua & Zhang, Hao & Chen, Haisheng & Xu, Yujie & Wu, Chunfei, 2021. "Pyrolysis characteristics and non-isothermal kinetics of waste wood biomass," Energy, Elsevier, vol. 226(C).
    4. Saari, Jussi & Sermyagina, Ekaterina & Kaikko, Juha & Vakkilainen, Esa & Sergeev, Vitaly, 2016. "Integration of hydrothermal carbonization and a CHP plant: Part 2 –operational and economic analysis," Energy, Elsevier, vol. 113(C), pages 574-585.
    5. Kartal, Furkan & Özveren, Uğur, 2022. "Prediction of torrefied biomass properties from raw biomass," Renewable Energy, Elsevier, vol. 182(C), pages 578-591.
    6. Antonios Nazos & Dorothea Politi & Georgios Giakoumakis & Dimitrios Sidiras, 2022. "Simulation and Optimization of Lignocellulosic Biomass Wet- and Dry-Torrefaction Process for Energy, Fuels and Materials Production: A Review," Energies, MDPI, vol. 15(23), pages 1-35, November.
    7. Tsai, Wen-Tien & Lin, Yu-Quan & Tsai, Chi-Hung & Chung, Mei-Hua & Chu, Ming-Hung & Huang, Hung-Ju & Jao, Ya-Hsuan & Yeh, Showin-Ing, 2020. "Conversion of water caltrop husk into torrefied biomass by torrefaction," Energy, Elsevier, vol. 195(C).
    8. He, Chao & Tang, Chunyan & Li, Chuanhao & Yuan, Jihui & Tran, Khanh-Quang & Bach, Quang-Vu & Qiu, Rongliang & Yang, Yanhui, 2018. "Wet torrefaction of biomass for high quality solid fuel production: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 91(C), pages 259-271.
    9. Mahmudul Hasan & Yousef Haseli & Ernur Karadogan, 2018. "Correlations to Predict Elemental Compositions and Heating Value of Torrefied Biomass," Energies, MDPI, vol. 11(9), pages 1-15, September.
    10. Bach, Quang-Vu & Tran, Khanh-Quang & Skreiberg, Øyvind, 2017. "Combustion kinetics of wet-torrefied forest residues using the distributed activation energy model (DAEM)," Applied Energy, Elsevier, vol. 185(P2), pages 1059-1066.
    11. Kumar, R. & Strezov, V. & Weldekidan, H. & He, J. & Singh, S. & Kan, T. & Dastjerdi, B., 2020. "Lignocellulose biomass pyrolysis for bio-oil production: A review of biomass pre-treatment methods for production of drop-in fuels," Renewable and Sustainable Energy Reviews, Elsevier, vol. 123(C).
    12. Bach, Quang-Vu & Skreiberg, Øyvind, 2016. "Upgrading biomass fuels via wet torrefaction: A review and comparison with dry torrefaction," Renewable and Sustainable Energy Reviews, Elsevier, vol. 54(C), pages 665-677.
    13. da Silva, Carlos Miguel Simões & Carneiro, Angélica de Cássia Oliveira & Vital, Benedito Rocha & Figueiró, Clarissa Gusmão & Fialho, Lucas de Freitas & de Magalhães, Mateus Alves & Carvalho, Amélia Gu, 2018. "Biomass torrefaction for energy purposes – Definitions and an overview of challenges and opportunities in Brazil," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 2426-2432.
    14. Chen, Renjie & Yuan, Shijie & Wang, Xiankai & Dai, Xiaohu & Guo, Yali & Li, Chong & Wu, Haibin & Dong, Bin, 2023. "Mechanistic insight into the effect of hydrothermal treatment of sewage sludge on subsequent pyrolysis: Evolution of volatile and their interaction with pyrolysis kinetic and products compositions," Energy, Elsevier, vol. 266(C).
    15. Mian, Inamullah & Li, Xian & Dacres, Omar D. & Wang, Jianjiang & Wei, Bo & Jian, Yiming & Zhong, Mei & Liu, Jingmei & Ma, Fengyun & Rahman, Noor, 2020. "Combustion kinetics and mechanism of biomass pellet," Energy, Elsevier, vol. 205(C).
    16. Wilk, Małgorzata & Magdziarz, Aneta, 2017. "Hydrothermal carbonization, torrefaction and slow pyrolysis of Miscanthus giganteus," Energy, Elsevier, vol. 140(P1), pages 1292-1304.
    17. Sobek, S. & Zeng, K. & Werle, S. & Junga, R. & Sajdak, M., 2022. "Brewer's spent grain pyrolysis kinetics and evolved gas analysis for the sustainable phenolic compounds and fatty acids recovery potential," Renewable Energy, Elsevier, vol. 199(C), pages 157-168.
    18. Zhao, Zhong & Feng, Shuo & Zhao, Yaying & Wang, Zhuozhi & Ma, Jiao & Xu, Lianfei & Yang, Jiancheng & Shen, Boxiong, 2022. "Investigation on the fuel quality and hydrophobicity of upgraded rice husk derived from various inert and oxidative torrefaction conditions," Renewable Energy, Elsevier, vol. 189(C), pages 1234-1248.
    19. Bach, Quang-Vu & Tran, Khanh-Quang & Skreiberg, Øyvind, 2017. "Comparative study on the thermal degradation of dry- and wet-torrefied woods," Applied Energy, Elsevier, vol. 185(P2), pages 1051-1058.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:17:y:2024:i:18:p:4605-:d:1477746. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.