IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v17y2024i18p4556-d1476076.html
   My bibliography  Save this article

Improving Vehicle Warm-Up Performance Using Phase-Change Materials and Thermal Storage Methods

Author

Listed:
  • Juho Lee

    (Department of Mechanical Engineering, Hanyang University, Ansan 15588, Gyeonggi, Republic of Korea)

  • Jungkoo Lee

    (Department of Mechanical Engineering, Hanyang University, Ansan 15588, Gyeonggi, Republic of Korea)

  • Kihyung Lee

    (Department of Mechanical Engineering, Hanyang University, Ansan 15588, Gyeonggi, Republic of Korea
    BK21 FOUR ERICA-ACE Center, Hanyang University, Ansan 15588, Gyeonggi, Republic of Korea)

Abstract

This study investigates the enhancement of vehicle warm-up performance using phase-change materials (PCMs) and various thermal storage methods. The primary objective is to utilize the thermal energy lost during engine cooling to improve the cold-start performance, thereby reducing fuel consumption and emissions. Thermal storage devices incorporating PCMs were developed and tested by measuring temperature changes and energy transfer over soaking periods of 4, 8, 16, and 24 h. The results show energy transfers of 591, 489, 446, and 315 kJ at 4, 8, 16, and 24 h, respectively. In terms of the warm-up time, the use of thermal storage devices reduced the time required to reach 70 °C by up to 24.45%, with significant reductions observed across all soaking periods. This reduction in the warm-up time directly contributes to faster engine stabilization, leading to proportional improvements in fuel efficiency and a corresponding decrease in exhaust emissions, including CO 2 . The findings highlight the effectiveness of PCMs in improving the engine warm-up performance and emphasize the importance of optimizing thermal storage systems to balance energy efficiency and practical application considerations. Additionally, the experimental data provide useful benchmark information for computational simulation validation, enabling the further optimization of automotive thermal management systems. Integrating a PCM-based thermal storage device can significantly enhance a vehicle’s warm-up performance, leading to reduced fuel consumption and lower emissions.

Suggested Citation

  • Juho Lee & Jungkoo Lee & Kihyung Lee, 2024. "Improving Vehicle Warm-Up Performance Using Phase-Change Materials and Thermal Storage Methods," Energies, MDPI, vol. 17(18), pages 1-22, September.
  • Handle: RePEc:gam:jeners:v:17:y:2024:i:18:p:4556-:d:1476076
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/17/18/4556/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/17/18/4556/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Jankowski, Nicholas R. & McCluskey, F. Patrick, 2014. "A review of phase change materials for vehicle component thermal buffering," Applied Energy, Elsevier, vol. 113(C), pages 1525-1561.
    2. Shon, Jungwook & Kim, Hyungik & Lee, Kihyung, 2014. "Improved heat storage rate for an automobile coolant waste heat recovery system using phase-change material in a fin–tube heat exchanger," Applied Energy, Elsevier, vol. 113(C), pages 680-689.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Pereira da Cunha, Jose & Eames, Philip, 2016. "Thermal energy storage for low and medium temperature applications using phase change materials – A review," Applied Energy, Elsevier, vol. 177(C), pages 227-238.
    2. Li, Zhi & Lu, Yiji & Huang, Rui & Chang, Jinwei & Yu, Xiaonan & Jiang, Ruicheng & Yu, Xiaoli & Roskilly, Anthony Paul, 2021. "Applications and technological challenges for heat recovery, storage and utilisation with latent thermal energy storage," Applied Energy, Elsevier, vol. 283(C).
    3. Ali Kalair & Elmira Jamei & Mehdi Seyedmahmoudian & Saad Mekhilef & Naeem Abas, 2024. "Building the Future: Integrating Phase Change Materials in Network of Nanogrids (NoN)," Energies, MDPI, vol. 17(23), pages 1-41, November.
    4. Miró, Laia & Gasia, Jaume & Cabeza, Luisa F., 2016. "Thermal energy storage (TES) for industrial waste heat (IWH) recovery: A review," Applied Energy, Elsevier, vol. 179(C), pages 284-301.
    5. Costa, Sol Carolina & Kenisarin, Murat, 2022. "A review of metallic materials for latent heat thermal energy storage: Thermophysical properties, applications, and challenges," Renewable and Sustainable Energy Reviews, Elsevier, vol. 154(C).
    6. Abdur Rehman Mazhar & Shuli Liu & Ashish Shukla, 2018. "A Key Review of Non-Industrial Greywater Heat Harnessing," Energies, MDPI, vol. 11(2), pages 1-34, February.
    7. Han, Lipeng & Xie, Shaolei & Liu, Shang & Sun, Jinhe & Jia, Yongzhong & Jing, Yan, 2017. "Effects of sodium chloride on the thermal behavior of oxalic acid dihydrate for thermal energy storage," Applied Energy, Elsevier, vol. 185(P1), pages 762-767.
    8. O’Connor, William E. & Warzoha, Ronald & Weigand, Rebecca & Fleischer, Amy S. & Wemhoff, Aaron P., 2014. "Thermal property prediction and measurement of organic phase change materials in the liquid phase near the melting point," Applied Energy, Elsevier, vol. 132(C), pages 496-506.
    9. Wenwen Ye & Dourna Jamshideasli & Jay M. Khodadadi, 2023. "Improved Performance of Latent Heat Energy Storage Systems in Response to Utilization of High Thermal Conductivity Fins," Energies, MDPI, vol. 16(3), pages 1-83, January.
    10. Rathgeber, Christoph & Schmit, Henri & Hennemann, Peter & Hiebler, Stefan, 2014. "Investigation of pinacone hexahydrate as phase change material for thermal energy storage around 45°C," Applied Energy, Elsevier, vol. 136(C), pages 7-13.
    11. Gunasekara, Saman Nimali & Pan, Ruijun & Chiu, Justin Ningwei & Martin, Viktoria, 2016. "Polyols as phase change materials for surplus thermal energy storage," Applied Energy, Elsevier, vol. 162(C), pages 1439-1452.
    12. Yang, Jialin & Yang, Lijun & Xu, Chao & Du, Xiaoze, 2016. "Experimental study on enhancement of thermal energy storage with phase-change material," Applied Energy, Elsevier, vol. 169(C), pages 164-176.
    13. Meng, Jing-Hui & Gao, De-Yang & Liu, Yan & Zhang, Kai & Lu, Gui, 2022. "Heat transfer mechanism and structure design of phase change materials to improve thermoelectric device performance," Energy, Elsevier, vol. 245(C).
    14. Lu, Bohui & Zhang, Yongxue & Sun, Dong & Jing, Xiaolei, 2021. "Experimental investigation on thermal properties of paraffin/expanded graphite composite material for low temperature thermal energy storage," Renewable Energy, Elsevier, vol. 178(C), pages 669-678.
    15. Pielichowska, Kinga & Nowak, Michał & Szatkowski, Piotr & Macherzyńska, Beata, 2016. "The influence of chain extender on properties of polyurethane-based phase change materials modified with graphene," Applied Energy, Elsevier, vol. 162(C), pages 1024-1033.
    16. Browne, M.C. & Norton, B. & McCormack, S.J., 2015. "Phase change materials for photovoltaic thermal management," Renewable and Sustainable Energy Reviews, Elsevier, vol. 47(C), pages 762-782.
    17. Jiang, Zhu & Palacios, Anabel & Zou, Boyang & Zhao, Yanqi & Deng, Weiyu & Zhang, Xiaosong & Ding, Yulong, 2022. "A review on the fabrication methods for structurally stabilised composite phase change materials and their impacts on the properties of materials," Renewable and Sustainable Energy Reviews, Elsevier, vol. 159(C).
    18. Liu, Ming & Saman, Wasim & Bruno, Frank, 2014. "Computer simulation with TRNSYS for a mobile refrigeration system incorporating a phase change thermal storage unit," Applied Energy, Elsevier, vol. 132(C), pages 226-235.
    19. Gang Wu & Guoda Feng & Yuelin Li & Tao Ling & Xuejun Peng & Zhilai Su & Xiaohuan Zhao, 2024. "A Review of Thermal Energy Management of Diesel Exhaust after-Treatment Systems Technology and Efficiency Enhancement Approaches," Energies, MDPI, vol. 17(3), pages 1-32, January.
    20. Jacek Kasperski & Anna Bać & Oluwafunmilola Oladipo, 2023. "A Simulation of a Sustainable Plus-Energy House in Poland Equipped with a Photovoltaic Powered Seasonal Thermal Storage System," Sustainability, MDPI, vol. 15(4), pages 1-19, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:17:y:2024:i:18:p:4556-:d:1476076. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.