IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v17y2024i17p4455-d1471864.html
   My bibliography  Save this article

Review of Classification of PCMs, with a Focus on the Search for New, Suitable PCM Candidates

Author

Listed:
  • Harald Mehling

    (Consultant (R&D), Weingartenstr. 37, 97072 Würzburg, Germany)

Abstract

With a growing number of PCMs and new, suitable PCM candidates, an overview is not only important, but also increasingly complex. Classification of PCM was thus changed significantly in the past decades. A review of classification of PCMs from recent years shows that not only different classification criteria are used, but more important that they are often mixed, used inconsistently, even without a clear goal. Focusing on the main goal of current classification schemes, to give an overview of the material options for the search for new, suitable PCM candidates, including already established PCMs, a consistent classification is developed in a desktop study. For this, first, the general options for classification criteria are reviewed, and then the appropriate ones selected. Then, based on them a new, revised PCM classification is suggested. It is specifically detailed with regard to mixtures; for binary mixtures it is based on a literature review performed within the study. The result also stresses the importance of specific R&D: for pure substances the sources and the chemical modification, and for mixtures their optimization by new compositions, additives, etc.

Suggested Citation

  • Harald Mehling, 2024. "Review of Classification of PCMs, with a Focus on the Search for New, Suitable PCM Candidates," Energies, MDPI, vol. 17(17), pages 1-18, September.
  • Handle: RePEc:gam:jeners:v:17:y:2024:i:17:p:4455-:d:1471864
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/17/17/4455/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/17/17/4455/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Yang, Lizhong & Villalobos, Uver & Akhmetov, Bakytzhan & Gil, Antoni & Khor, Jun Onn & Palacios, Anabel & Li, Yongliang & Ding, Yulong & Cabeza, Luisa F. & Tan, Wooi Leong & Romagnoli, Alessandro, 2021. "A comprehensive review on sub-zero temperature cold thermal energy storage materials, technologies, and applications: State of the art and recent developments," Applied Energy, Elsevier, vol. 288(C).
    2. Rathgeber, Christoph & Schmit, Henri & Hennemann, Peter & Hiebler, Stefan, 2014. "Investigation of pinacone hexahydrate as phase change material for thermal energy storage around 45°C," Applied Energy, Elsevier, vol. 136(C), pages 7-13.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xinchen Zhou & Xiang Xu & Jiping Huang, 2023. "Adaptive multi-temperature control for transport and storage containers enabled by phase-change materials," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    2. Liu, Yali & Li, Ming & Emam Hassanien, Reda Hassanien & Wang, Yunfeng & Tang, Runsheng & Zhang, Ying, 2024. "Fabrication of shape-stable glycine water-based phase-change material using modified expanded graphite for cold energy storage," Energy, Elsevier, vol. 290(C).
    3. Zhang, Suling & Wu, Wei & Wang, Shuangfeng, 2018. "Experimental investigations of Alum/expanded graphite composite phase change material for thermal energy storage and its compatibility with metals," Energy, Elsevier, vol. 161(C), pages 508-516.
    4. Rocha, Thiago Torres Martins & Teggar, Mohamed & Trevizoli, Paulo Vinicius & de Oliveira, Raphael Nunes, 2023. "Potential of latent thermal energy storage for performance improvement in small-scale refrigeration units: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 187(C).
    5. Tafone, Alessio & Romagnoli, Alessandro, 2023. "A novel liquid air energy storage system integrated with a cascaded latent heat cold thermal energy storage," Energy, Elsevier, vol. 281(C).
    6. Cong, L. & Zou, B. & Palacios, A. & Navarro, M.E. & Qiao, G. & Ding, Y., 2022. "Thickening and gelling agents for formulation of thermal energy storage materials – A critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 155(C).
    7. Xinghui Zhang & Qili Shi & Lingai Luo & Yilin Fan & Qian Wang & Guanguan Jia, 2021. "Research Progress on the Phase Change Materials for Cold Thermal Energy Storage," Energies, MDPI, vol. 14(24), pages 1-46, December.
    8. Rajendran Prabakaran & Palanisamy Dhamodharan & Anbalagan Sathishkumar & Paride Gullo & Muthuraman Ponrajan Vikram & Saravanan Pandiaraj & Abdullah Alodhayb & Ghada A. Khouqeer & Sung-Chul Kim, 2023. "An Overview of the State of the Art and Challenges in the Use of Gelling and Thickening Agents to Create Stable Thermal Energy Storage Materials," Energies, MDPI, vol. 16(8), pages 1-24, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:17:y:2024:i:17:p:4455-:d:1471864. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.