IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v17y2024i17p4288-d1465315.html
   My bibliography  Save this article

Transport Fleet Electrification Development Conditions—Perspective of Transport, Shipping, and Logistics Industry in Poland

Author

Listed:
  • Marta Raźniewska

    (Department of Logistics, Faculty of Management, University of Lodz, 90-136 Lodz, Poland)

  • Anna Wronka

    (Department of Logistics, Faculty of Management, University of Lodz, 90-136 Lodz, Poland)

Abstract

The development of electric vehicle fleets is an important element of today’s economic, social, and ecological development. This multidimensional sustainable process, although not easy, generates many tangible benefits for various stakeholders, ranging from environmental to financial and competence issues. Despite the fact that the phenomenon of transformation toward rational energy management is gaining momentum on a global scale, there is a significant disproportion in terms of development levels depending on the origin of the economy. The aim of this research article is to identify the key factors affecting the development of fleet electrification in the transport, shipping, and logistics (TSL) sector in Poland. Based on a literature review, a fleet development framework was developed using a PESTEL (political, economic, social, technological, environmental, and legal) analysis and evaluated by TSL companies. According to the conclusions drawn, the most important stimulants are economic factors and technological factors, which limit the development of electrified transport fleets in the TSL industry. Based on this, the authors propose various solutions to improve economic profitability and technological conditions. In addition, it was found that the attitudes of the decision makers at transport companies and cooperation within the TSL sector are also important.

Suggested Citation

  • Marta Raźniewska & Anna Wronka, 2024. "Transport Fleet Electrification Development Conditions—Perspective of Transport, Shipping, and Logistics Industry in Poland," Energies, MDPI, vol. 17(17), pages 1-19, August.
  • Handle: RePEc:gam:jeners:v:17:y:2024:i:17:p:4288-:d:1465315
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/17/17/4288/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/17/17/4288/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. James B. Bushnell & Erich Muehlegger & David S. Rapson, 2022. "Energy Prices and Electric Vehicle Adoption," NBER Working Papers 29842, National Bureau of Economic Research, Inc.
    2. Khan, Shakil & Maoh, Hanna, 2022. "Investigating attitudes towards fleet electrification – An exploratory analysis approach," Transportation Research Part A: Policy and Practice, Elsevier, vol. 162(C), pages 188-205.
    3. Chen, Feng & Taylor, Nathaniel & Kringos, Nicole, 2015. "Electrification of roads: Opportunities and challenges," Applied Energy, Elsevier, vol. 150(C), pages 109-119.
    4. Tamba, Marie & Krause, Jette & Weitzel, Matthias & Ioan, Raileanu & Duboz, Louison & Grosso, Monica & Vandyck, Toon, 2022. "Economy-wide impacts of road transport electrification in the EU," Technological Forecasting and Social Change, Elsevier, vol. 182(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jürgen K. Wilke & Ferdinand Schöpp & Regina Linke & Laurenz Bremer & Maya Ada Scheyltjens & Niki Buggenhout & Eva Kassens-Noor, 2024. "Availability of an Overhead Contact Line System for the Electrification of Road Freight Transport," Sustainability, MDPI, vol. 16(15), pages 1-14, July.
    2. Mekky, Maher F. & Collins, Alan R., 2024. "The Impact of state policies on electric vehicle adoption -A panel data analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 191(C).
    3. Soares, Laura & Wang, Hao, 2022. "A study on renewed perspectives of electrified road for wireless power transfer of electric vehicles," Renewable and Sustainable Energy Reviews, Elsevier, vol. 158(C).
    4. Maria Taljegard & Lisa Göransson & Mikael Odenberger & Filip Johnsson, 2019. "Electric Vehicles as Flexibility Management Strategy for the Electricity System—A Comparison between Different Regions of Europe," Energies, MDPI, vol. 12(13), pages 1-19, July.
    5. Liu, Haoxiang & Wang, David Z.W., 2017. "Locating multiple types of charging facilities for battery electric vehicles," Transportation Research Part B: Methodological, Elsevier, vol. 103(C), pages 30-55.
    6. Hasan Huseyin Coban & Aysha Rehman & Abdullah Mohamed, 2022. "Analyzing the Societal Cost of Electric Roads Compared to Batteries and Oil for All Forms of Road Transport," Energies, MDPI, vol. 15(5), pages 1-20, March.
    7. Natanael Bolson & Maxim Yutkin & Tadeusz Patzek, 2023. "Primary Power Analysis of a Global Electrification Scenario," Sustainability, MDPI, vol. 15(19), pages 1-20, October.
    8. Taljegard, M. & Göransson, L. & Odenberger, M. & Johnsson, F., 2017. "Spacial and dynamic energy demand of the E39 highway – Implications on electrification options," Applied Energy, Elsevier, vol. 195(C), pages 681-692.
    9. Tan, Zhen & Liu, Fan & Chan, Hing Kai & Gao, H. Oliver, 2022. "Transportation systems management considering dynamic wireless charging electric vehicles: Review and prospects," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 163(C).
    10. Shokrzadeh, Shahab & Bibeau, Eric, 2016. "Sustainable integration of intermittent renewable energy and electrified light-duty transportation through repurposing batteries of plug-in electric vehicles," Energy, Elsevier, vol. 106(C), pages 701-711.
    11. Thomas De Muijlder & Michel Voué & Philippe Leclère, 2023. "Laser Ablation Synthesis of Silver Nanoparticles for Polymer Nanocomposites," Energies, MDPI, vol. 16(12), pages 1-12, June.
    12. Nieto, Jaime & Brockway, Paul E. & Sakai, Marco & Barrett, John, 2024. "Assessing the energy and socio-macroeconomic impacts of the EV transition: A UK case study 2020–2050," Applied Energy, Elsevier, vol. 370(C).
    13. Koasidis, Konstantinos & Nikas, Alexandros & Van de Ven, Dirk-Jan & Xexakis, Georgios & Forouli, Aikaterini & Mittal, Shivika & Gambhir, Ajay & Koutsellis, Themistoklis & Doukas, Haris, 2022. "Towards a green recovery in the EU: Aligning further emissions reductions with short- and long-term energy-sector employment gains," Energy Policy, Elsevier, vol. 171(C).
    14. Liu, Haoxiang & Zou, Yuncheng & Chen, Ya & Long, Jiancheng, 2021. "Optimal locations and electricity prices for dynamic wireless charging links of electric vehicles for sustainable transportation," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 152(C).
    15. Bakker, J. & Lopez Alvarez, J.A. & Buijs, P., 2024. "A network design perspective on the adoption potential of electric road systems in early development stages," Applied Energy, Elsevier, vol. 361(C).
    16. Jānis Krūmiņš & Māris Kļaviņš, 2023. "Investigating the Potential of Nuclear Energy in Achieving a Carbon-Free Energy Future," Energies, MDPI, vol. 16(9), pages 1-31, April.
    17. Liimatainen, Heikki & van Vliet, Oscar & Aplyn, David, 2019. "The potential of electric trucks – An international commodity-level analysis," Applied Energy, Elsevier, vol. 236(C), pages 804-814.
    18. Tian, Xuelin & An, Chunjiang & Chen, Zhikun, 2023. "The role of clean energy in achieving decarbonization of electricity generation, transportation, and heating sectors by 2050: A meta-analysis review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 182(C).
    19. Alwesabi, Yaseen & Wang, Yong & Avalos, Raul & Liu, Zhaocai, 2020. "Electric bus scheduling under single depot dynamic wireless charging infrastructure planning," Energy, Elsevier, vol. 213(C).
    20. Yonghwan Jeong & Wongun Kim & Seongjin Yim, 2022. "Model Predictive Control Based Path Tracking and Velocity Control with Rollover Prevention Function for Autonomous Electric Road Sweeper," Energies, MDPI, vol. 15(3), pages 1-19, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:17:y:2024:i:17:p:4288-:d:1465315. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.