IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v377y2025ipds0306261924021172.html
   My bibliography  Save this article

Estimating the tipping point for lithium iron phosphate batteries

Author

Listed:
  • Nunes, Ashley
  • See, Chung Yi
  • Woodley, Lucas
  • Wang, Seaver
  • Liu, Gao

Abstract

Uncertainty surrounding NMC cathode chemistry prices have prompted increasing interest in less expensive alternative technologies. Chief among these is lithium iron phosphate (LFP), a chemistry that offers a cost advantage at the expense of energy density. We estimate which chemistry offers a lower cost at targeted vehicle ranges consistent with those consumers can expect from internal combustion engine vehicles. Our model – which considers tradeoffs between battery capacity and weight – enumerates a range ‘tipping point’ of 373.52 miles, beyond which NMC batteries consistently demonstrate a cost advantage over LFP batteries, despite the latter's reliance on less costly minerals. Using this tipping point as a benchmark, we leverage trip-level data from the National Household Travel Survey to explore which U.S. households may benefit from EVs equipped with LFP versus NMC batteries. Among multi-vehicle households, only 1 % of all trips taken exceed 160.53 miles, a figure analogous to our most conservative tipping point. To the extent that EVs may be utilized for relatively short commutes or as secondary or tertiary vehicles, our results suggest that LFP batteries can offer lower costs relative to NMC batteries while satisfying most households' travel demands. We subsequently discuss the policy implications of these findings.

Suggested Citation

  • Nunes, Ashley & See, Chung Yi & Woodley, Lucas & Wang, Seaver & Liu, Gao, 2025. "Estimating the tipping point for lithium iron phosphate batteries," Applied Energy, Elsevier, vol. 377(PD).
  • Handle: RePEc:eee:appene:v:377:y:2025:i:pd:s0306261924021172
    DOI: 10.1016/j.apenergy.2024.124734
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261924021172
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2024.124734?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Xing, Jianwei & Leard, Benjamin & Li, Shanjun, 2021. "What does an electric vehicle replace?," Journal of Environmental Economics and Management, Elsevier, vol. 107(C).
    2. Scott Hardman & Gil Tal, 2021. "Understanding discontinuance among California’s electric vehicle owners," Nature Energy, Nature, vol. 6(5), pages 538-545, May.
    3. Ashley Nunes & Lucas Woodley & Philip Rossetti, 2022. "Re-thinking procurement incentives for electric vehicles to achieve net-zero emissions," Nature Sustainability, Nature, vol. 5(6), pages 527-532, June.
    4. Darius Lakdawalla & Tomas Philipson, 2012. "Does Intellectual Property Restrict Output? An Analysis of Pharmaceutical Markets," Journal of Law and Economics, University of Chicago Press, vol. 55(1), pages 151-187.
    5. Hsieh, I-Yun Lisa & Pan, Menghsuan Sam & Chiang, Yet-Ming & Green, William H., 2019. "Learning only buys you so much: Practical limits on battery price reduction," Applied Energy, Elsevier, vol. 239(C), pages 218-224.
    6. Célestin Banza Lubaba Nkulu & Lidia Casas & Vincent Haufroid & Thierry De Putter & Nelly D. Saenen & Tony Kayembe-Kitenge & Paul Musa Obadia & Daniel Kyanika Wa Mukoma & Jean-Marie Lunda Ilunga & Tim , 2018. "Sustainability of artisanal mining of cobalt in DR Congo," Nature Sustainability, Nature, vol. 1(9), pages 495-504, September.
    7. Chandra, Ambarish & Gulati, Sumeet & Kandlikar, Milind, 2010. "Green drivers or free riders? An analysis of tax rebates for hybrid vehicles," Journal of Environmental Economics and Management, Elsevier, vol. 60(2), pages 78-93, September.
    8. Shi, Xiao & Pan, Jian & Wang, Hewu & Cai, Hua, 2019. "Battery electric vehicles: What is the minimum range required?," Energy, Elsevier, vol. 166(C), pages 352-358.
    9. Lucas Woodley & Chung Yi See & Peter Cook & Megan Yeo & Daniel S. Palmer & Laurena Huh & Seaver Wang & Ashley Nunes, 2024. "Climate impacts of critical mineral supply chain bottlenecks for electric vehicle deployment," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    10. James B. Bushnell & Erich Muehlegger & David S. Rapson, 2022. "Energy Prices and Electric Vehicle Adoption," NBER Working Papers 29842, National Bureau of Economic Research, Inc.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jia, Wenjian & Jiang, Zhiqiu & Wang, Qian & Xu, Bin & Xiao, Mei, 2023. "Preferences for zero-emission vehicle attributes: Comparing early adopters with mainstream consumers in California," Transport Policy, Elsevier, vol. 135(C), pages 21-32.
    2. Yue Ren & Xin Sun & Paul Wolfram & Shaoqiong Zhao & Xu Tang & Yifei Kang & Dongchang Zhao & Xinzhu Zheng, 2023. "Hidden delays of climate mitigation benefits in the race for electric vehicle deployment," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    3. Sheldon, Tamara L. & Dua, Rubal, 2024. "The dynamic role of subsidies in promoting global electric vehicle sales," Transportation Research Part A: Policy and Practice, Elsevier, vol. 187(C).
    4. Liang, Jing & Qiu, Yueming (Lucy) & Xing, Bo, 2022. "Impacts of the co-adoption of electric vehicles and solar panel systems: Empirical evidence of changes in electricity demand and consumer behaviors from household smart meter data," Energy Economics, Elsevier, vol. 112(C).
    5. Li, Ping & Zhang, ZhongXiang, 2023. "The effects of new energy vehicle subsidies on air quality: Evidence from China," Energy Economics, Elsevier, vol. 120(C).
    6. Mekky, Maher F. & Collins, Alan R., 2024. "The Impact of state policies on electric vehicle adoption -A panel data analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 191(C).
    7. Ross McKitrick, 2024. "Economic implications of a phased‐in EV mandate in Canada," Canadian Journal of Economics/Revue canadienne d'économique, John Wiley & Sons, vol. 57(4), pages 1434-1458, November.
    8. Muehlegger, Erich & Rapson, David S., 2022. "Subsidizing low- and middle-income adoption of electric vehicles: Quasi-experimental evidence from California," Journal of Public Economics, Elsevier, vol. 216(C).
    9. Abdul-Manan, Amir F.N. & Won, Hyun-Woo & Li, Yang & Sarathy, S. Mani & Xie, Xiaomin & Amer, Amer A., 2020. "Bridging the gap in a resource and climate-constrained world with advanced gasoline compression-ignition hybrids," Applied Energy, Elsevier, vol. 267(C).
    10. Winikoff, Justin B., 2024. "Economic specialization, infrastructure, and rural electric vehicle adoption," Energy Policy, Elsevier, vol. 195(C).
    11. Burd, Joshua Thomas Jameson & Moore, Elizabeth A. & Ezzat, Hesham & Kirchain, Randolph & Roth, Richard, 2021. "Improvements in electric vehicle battery technology influence vehicle lightweighting and material substitution decisions," Applied Energy, Elsevier, vol. 283(C).
    12. Anni Orola & Anna Härri & Jarkko Levänen & Ville Uusitalo & Stig Irving Olsen, 2022. "Assessing WELBY Social Life Cycle Assessment Approach through Cobalt Mining Case Study," Sustainability, MDPI, vol. 14(18), pages 1-26, September.
    13. Wang, Jiaxing & Matsumoto, Shigeru, 2022. "Can subsidy programs lead consumers to select “greener” products?: Evidence from the Eco-car program in Japan," Research in Transportation Economics, Elsevier, vol. 91(C).
    14. Li, Zhe & Ouyang, Minggao, 2011. "A win-win marginal rent analysis for operator and consumer under battery leasing mode in China electric vehicle market," Energy Policy, Elsevier, vol. 39(6), pages 3222-3237, June.
    15. Mousavi, Navid & Kothapalli, Ganesh & Habibi, Daryoush & Das, Choton K. & Baniasadi, Ali, 2020. "A novel photovoltaic-pumped hydro storage microgrid applicable to rural areas," Applied Energy, Elsevier, vol. 262(C).
    16. Hasret Sahin & A. A. Solomon & Arman Aghahosseini & Christian Breyer, 2024. "Systemwide energy return on investment in a sustainable transition towards net zero power systems," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
    17. Tony Kayembe-Kitenge & Irene Kabange Umba & Paul Musa Obadia & Sebastien Mbuyi-Musanzayi & Patient Nkulu Banza & Patrick D. M. C. Katoto & Cyrille Katshiez Nawej & Georges Kalenga Ilunga & Vincent Hau, 2020. "Respiratory Health and Urinary Trace Metals among Artisanal Stone-Crushers: A Cross-Sectional Study in Lubumbashi, DR Congo," IJERPH, MDPI, vol. 17(24), pages 1-12, December.
    18. Raphael Calel & Jonathan Colmer & Antoine Dechezleprêtre & Matthieu Glachant, 2025. "Do Carbon Offsets Offset Carbon?," American Economic Journal: Applied Economics, American Economic Association, vol. 17(1), pages 1-40, January.
    19. Lucas W. Davis, 2017. "The Environmental Cost of Global Fuel Subsidies," The Energy Journal, International Association for Energy Economics, vol. 0(KAPSARC S).
    20. Yun, Lingxiang & Xiao, Minkun & Li, Lin, 2022. "Vehicle-to-manufacturing (V2M) system: A novel approach to improve energy demand flexibility for demand response towards sustainable manufacturing," Applied Energy, Elsevier, vol. 323(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:377:y:2025:i:pd:s0306261924021172. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.