IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v17y2024i16p4132-d1459519.html
   My bibliography  Save this article

Advanced Deep Learning Techniques for Battery Thermal Management in New Energy Vehicles

Author

Listed:
  • Shaotong Qi

    (National Key Laboratory of Automotive Chassis Integration and Biomimetics, Jilin University, Changchun 130025, China
    College of Automotive Engineering, Jilin University, Changchun 130025, China)

  • Yubo Cheng

    (National Key Laboratory of Automotive Chassis Integration and Biomimetics, Jilin University, Changchun 130025, China
    College of Automotive Engineering, Jilin University, Changchun 130025, China)

  • Zhiyuan Li

    (National Key Laboratory of Automotive Chassis Integration and Biomimetics, Jilin University, Changchun 130025, China
    College of Automotive Engineering, Jilin University, Changchun 130025, China)

  • Jiaxin Wang

    (National Key Laboratory of Automotive Chassis Integration and Biomimetics, Jilin University, Changchun 130025, China
    College of Automotive Engineering, Jilin University, Changchun 130025, China)

  • Huaiyi Li

    (National Key Laboratory of Automotive Chassis Integration and Biomimetics, Jilin University, Changchun 130025, China
    College of Automotive Engineering, Jilin University, Changchun 130025, China)

  • Chunwei Zhang

    (National Key Laboratory of Automotive Chassis Integration and Biomimetics, Jilin University, Changchun 130025, China
    College of Automotive Engineering, Jilin University, Changchun 130025, China)

Abstract

In the current era of energy conservation and emission reduction, the development of electric and other new energy vehicles is booming. With their various attributes, lithium batteries have become the ideal power source for new energy vehicles. However, lithium-ion batteries are highly sensitive to temperature changes. Excessive temperatures, either high or low, can lead to abnormal operation of the batteries, posing a threat to the safety of the entire vehicle. Therefore, developing a reliable and efficient Battery Thermal Management System (BTMS) that can monitor battery status and prevent thermal runaway is becoming increasingly important. In recent years, deep learning has gradually become widely applied in various fields as an efficient method, and it has also been applied to some extent in the development of BTMS. In this work, we discuss the basic principles of deep learning and related optimization principles and elaborate on the algorithmic principles, frameworks, and applications of various advanced deep learning methods in BTMS. We also discuss several emerging deep learning algorithms proposed in recent years, their principles, and their feasibility in BTMS applications. Finally, we discuss the obstacles faced by various deep learning algorithms in the development of BTMS and potential directions for development, proposing some ideas for progress. This paper aims to analyze the advanced deep learning technologies commonly used in BTMS and some emerging deep learning technologies and provide new insights into the current combination of deep learning technology in new energy trams to assist the development of BTMS.

Suggested Citation

  • Shaotong Qi & Yubo Cheng & Zhiyuan Li & Jiaxin Wang & Huaiyi Li & Chunwei Zhang, 2024. "Advanced Deep Learning Techniques for Battery Thermal Management in New Energy Vehicles," Energies, MDPI, vol. 17(16), pages 1-38, August.
  • Handle: RePEc:gam:jeners:v:17:y:2024:i:16:p:4132-:d:1459519
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/17/16/4132/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/17/16/4132/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Li, Marui & Dong, Chaoyu & Xiong, Binyu & Mu, Yunfei & Yu, Xiaodan & Xiao, Qian & Jia, Hongjie, 2022. "STTEWS: A sequential-transformer thermal early warning system for lithium-ion battery safety," Applied Energy, Elsevier, vol. 328(C).
    2. Genwei Wang & Xuanfu Guo & Jingyi Chen & Pengfei Han & Qiliang Su & Meiqing Guo & Bin Wang & Hui Song, 2023. "Safety Performance and Failure Criteria of Lithium-Ion Batteries under Mechanical Abuse," Energies, MDPI, vol. 16(17), pages 1-25, September.
    3. Ajay Bandi & Pydi Venkata Satya Ramesh Adapa & Yudu Eswar Vinay Pratap Kumar Kuchi, 2023. "The Power of Generative AI: A Review of Requirements, Models, Input–Output Formats, Evaluation Metrics, and Challenges," Future Internet, MDPI, vol. 15(8), pages 1-60, July.
    4. Cui, Zhenhua & Kang, Le & Li, Liwei & Wang, Licheng & Wang, Kai, 2022. "A hybrid neural network model with improved input for state of charge estimation of lithium-ion battery at low temperatures," Renewable Energy, Elsevier, vol. 198(C), pages 1328-1340.
    5. Yuan, Xiaodong & Cai, Yuchen, 2021. "Forecasting the development trend of low emission vehicle technologies: Based on patent data," Technological Forecasting and Social Change, Elsevier, vol. 166(C).
    6. Siyi Tao & Bo Jiang & Xuezhe Wei & Haifeng Dai, 2023. "A Systematic and Comparative Study of Distinct Recurrent Neural Networks for Lithium-Ion Battery State-of-Charge Estimation in Electric Vehicles," Energies, MDPI, vol. 16(4), pages 1-17, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ming Zhang & Dongfang Yang & Jiaxuan Du & Hanlei Sun & Liwei Li & Licheng Wang & Kai Wang, 2023. "A Review of SOH Prediction of Li-Ion Batteries Based on Data-Driven Algorithms," Energies, MDPI, vol. 16(7), pages 1-28, March.
    2. Jia Xie & Huipin Lin & Jifeng Qu & Luhong Shi & Zuhong Chen & Sheng Chen & Yong Zheng, 2024. "Hierarchical Structure-Based Wireless Active Balancing System for Power Batteries," Energies, MDPI, vol. 17(18), pages 1-32, September.
    3. Takyi-Aninakwa, Paul & Wang, Shunli & Zhang, Hongying & Yang, Xiao & Fernandez, Carlos, 2023. "A hybrid probabilistic correction model for the state of charge estimation of lithium-ion batteries considering dynamic currents and temperatures," Energy, Elsevier, vol. 273(C).
    4. Xiaodong Yuan & Weiling Song, 2022. "Evaluating technology innovation capabilities of companies based on entropy- TOPSIS: the case of solar cell companies," Information Technology and Management, Springer, vol. 23(2), pages 65-76, June.
    5. Xiong, Wei & Xie, Fang & Xu, Gang & Li, Yumei & Li, Ben & Mo, Yimin & Ma, Fei & Wei, Keke, 2023. "Co-estimation of the model parameter and state of charge for retired lithium-ion batteries over a wide temperature range and battery degradation scope," Renewable Energy, Elsevier, vol. 218(C).
    6. Yoon, Naeun & Sohn, So Young, 2024. "Assessment framework for automotive suppliers' technological adaptability in the electric vehicle era," Technological Forecasting and Social Change, Elsevier, vol. 203(C).
    7. Choi, Hyunhong & Woo, JongRoul, 2022. "Investigating emerging hydrogen technology topics and comparing national level technological focus: Patent analysis using a structural topic model," Applied Energy, Elsevier, vol. 313(C).
    8. Calise, Francesco & Cappiello, Francesco Liberato & Cimmino, Luca & Dentice d’Accadia, Massimo & Vicidomini, Maria, 2023. "Renewable smart energy network: A thermoeconomic comparison between conventional lithium-ion batteries and reversible solid oxide fuel cells," Renewable Energy, Elsevier, vol. 214(C), pages 74-95.
    9. Zizhen Cheng & Li Wang & Yumeng Yang, 2023. "A Hybrid Feature Pyramid CNN-LSTM Model with Seasonal Inflection Month Correction for Medium- and Long-Term Power Load Forecasting," Energies, MDPI, vol. 16(7), pages 1-18, March.
    10. Xi, Xi & Ren, Feifei & Yu, Lean & Yang, Jing, 2023. "Detecting the technology's evolutionary pathway using HiDS-trait-driven tech mining strategy," Technological Forecasting and Social Change, Elsevier, vol. 195(C).
    11. Li, Xiaotao & Yuan, Xiaodong, 2022. "Tracing the technology transfer of battery electric vehicles in China: A patent citation organization network analysis," Energy, Elsevier, vol. 239(PD).
    12. Li, Li & Ling, Lei & Xie, Yajun & Zhou, Wencai & Wang, Tianbo & Zhang, Lanchun & Bei, Shaoyi & Zheng, Keqing & Xu, Qiang, 2023. "Comparative study of thermal management systems with different cooling structures for cylindrical battery modules: Side-cooling vs. terminal-cooling," Energy, Elsevier, vol. 274(C).
    13. Safa Jameel Al-Kamil & Róbert Szabolcsi, 2024. "Enhancing Mobile Robot Navigation: Optimization of Trajectories through Machine Learning Techniques for Improved Path Planning Efficiency," Mathematics, MDPI, vol. 12(12), pages 1-21, June.
    14. Nepal, Rabindra & Zhao, Xiaomeng & Liu, Yang & Dong, Kangyin, 2024. "Can green finance strengthen energy resilience? The case of China," Technological Forecasting and Social Change, Elsevier, vol. 202(C).
    15. Chiarello, Filippo & Fantoni, Gualtiero & Hogarth, Terence & Giordano, Vito & Baltina, Liga & Spada, Irene, 2021. "Towards ESCO 4.0 – Is the European classification of skills in line with Industry 4.0? A text mining approach," Technological Forecasting and Social Change, Elsevier, vol. 173(C).
    16. Bonnin Roca, Jaime, 2022. "Teaching technological forecasting to undergraduate students: a reflection on challenges and opportunities," Technological Forecasting and Social Change, Elsevier, vol. 180(C).
    17. Min Zhao & Yu Fang & Debao Dai, 2023. "Forecast of the Evolution Trend of Total Vehicle Sales and Power Structure of China under Different Scenarios," Sustainability, MDPI, vol. 15(5), pages 1-22, February.
    18. Lai, Rucong & Wang, Jie & Tian, Yong & Tian, Jindong, 2024. "FedCBE: A federated-learning-based collaborative battery estimation system with non-IID data," Applied Energy, Elsevier, vol. 368(C).
    19. Nikša Alfirević & Daniela Garbin Praničević & Mirela Mabić, 2024. "Custom-Trained Large Language Models as Open Educational Resources: An Exploratory Research of a Business Management Educational Chatbot in Croatia and Bosnia and Herzegovina," Sustainability, MDPI, vol. 16(12), pages 1-18, June.
    20. Zhihang Zhang & Languang Lu & Yalun Li & Hewu Wang & Minggao Ouyang, 2023. "Accurate Remaining Available Energy Estimation of LiFePO 4 Battery in Dynamic Frequency Regulation for EVs with Thermal-Electric-Hysteresis Model," Energies, MDPI, vol. 16(13), pages 1-28, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:17:y:2024:i:16:p:4132-:d:1459519. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.