IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v17y2024i16p4122-d1459155.html
   My bibliography  Save this article

Synergistic Effects in Co-Gasification of Willow and Cedar Blended Char in CO 2 Media

Author

Listed:
  • Kenji Koido

    (Department of Wood Properties and Processing, Forestry and Forest Products Research Institute, 1 Matsunosato, Tsukuba 305-8687, Japan
    Faculty of Symbiotic Systems Science, Fukushima University, 1 Kanayagawa, Fukushima 960-1296, Japan
    Hydrogen Energy Research Institute, Faculty of Symbiotic Systems Science, Fukushima University, 1 Kanayagawa, Fukushima 960-1296, Japan)

  • Kenji Endo

    (Graduate School of Symbiotic Systems Science and Technology, Fukushima University, 1 Kanayagawa, Fukushima 960-1296, Japan)

  • Hidetsugu Morimoto

    (Graduate School of Bioresources, Mie University, 1577 Kurimamachiya-cho, Tsu 514-8507, Japan)

  • Hironori Ohashi

    (Faculty of Symbiotic Systems Science, Fukushima University, 1 Kanayagawa, Fukushima 960-1296, Japan
    Hydrogen Energy Research Institute, Faculty of Symbiotic Systems Science, Fukushima University, 1 Kanayagawa, Fukushima 960-1296, Japan)

  • Michio Sato

    (Faculty of Symbiotic Systems Science, Fukushima University, 1 Kanayagawa, Fukushima 960-1296, Japan)

Abstract

Willow is a promising biomass resource for addressing the challenges of securing stable domestic biomass fuels in Japan and utilising abandoned agricultural land. Among the willow species, Salix pet-susu Kimura KKD (known as ezonokinu willow, EW) stands out for its growth, high production, storage stability, production stability, and business stability. Previous studies have investigated fuel characterisation through gasification (co-gasification) of various biomass mixtures to enhance feedstock flexibility for gasifier commercialisation. However, the synergistic effects of co-gasification using fuels containing EW blended with Japanese cedar, a commonly planted forest species in Japan, remain unexplored. Therefore, this study explored CO 2 co-gasification with different blend ratios of EW/cedar blended char and evaluated the fuel characteristics for each blend ratio to elucidate the synergistic effects. The prepared char samples were utilised in the CO 2 gasification test with TG-DTA as the analyser. The results suggest that in the initial stages of the willow/cedar blended char co-gasification reaction, pore size and specific surface area significantly influence the reaction rate. Subsequent stages of the reaction are influenced by the promoting and inhibiting effects of inorganic components, which impact co-gasification. The synergy factor results for the willow/cedar blended char co-gasification suggest a reaction pathway.

Suggested Citation

  • Kenji Koido & Kenji Endo & Hidetsugu Morimoto & Hironori Ohashi & Michio Sato, 2024. "Synergistic Effects in Co-Gasification of Willow and Cedar Blended Char in CO 2 Media," Energies, MDPI, vol. 17(16), pages 1-16, August.
  • Handle: RePEc:gam:jeners:v:17:y:2024:i:16:p:4122-:d:1459155
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/17/16/4122/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/17/16/4122/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Wei, Juntao & Gong, Yan & Guo, Qinghua & Chen, Xueli & Ding, Lu & Yu, Guangsuo, 2019. "A mechanism investigation of synergy behaviour variations during blended char co-gasification of biomass and different rank coals," Renewable Energy, Elsevier, vol. 131(C), pages 597-605.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jiao, Zixin & Qiu, Penghua & Chen, Xiye & Liu, Li & Zhang, Linyao & Xing, Chang, 2023. "Effects of volatiles and active AAEMs interaction with char on char characteristics during co-pyrolysis," Renewable Energy, Elsevier, vol. 208(C), pages 618-626.
    2. Aboelazayem, Omar & Gadalla, Mamdouh & Alhajri, Ibrahim & Saha, Basudeb, 2021. "Advanced process integration for supercritical production of biodiesel: Residual waste heat recovery via organic Rankine cycle (ORC)," Renewable Energy, Elsevier, vol. 164(C), pages 433-443.
    3. Wei, Juntao & Guo, Qinghua & Gong, Yan & Ding, Lu & Yu, Guangsuo, 2020. "Effect of biomass leachates on structure evolution and reactivity characteristic of petroleum coke gasification," Renewable Energy, Elsevier, vol. 155(C), pages 111-120.
    4. Chen, Xiye & Liu, Li & Zhang, Linyao & Zhao, Yan & Xing, Chang & Jiao, Zixin & Yang, Chunhui & Qiu, Penghua, 2021. "Effect of active alkali and alkaline earth metals on physicochemical properties and gasification reactivity of co-pyrolysis char from coal blended with corn stalks," Renewable Energy, Elsevier, vol. 171(C), pages 1213-1223.
    5. Wu, Ruochen & Beutler, Jacob & Baxter, Larry L., 2020. "Non-catalytic ash effect on char reactivity," Applied Energy, Elsevier, vol. 260(C).
    6. Hernández, J.J. & Saffe, A. & Collado, R. & Monedero, E., 2020. "Recirculation of char from biomass gasification: Effects on gasifier performance and end-char properties," Renewable Energy, Elsevier, vol. 147(P1), pages 806-813.
    7. Ong, Hwai Chyuan & Chen, Wei-Hsin & Farooq, Abid & Gan, Yong Yang & Lee, Keat Teong & Ashokkumar, Veeramuthu, 2019. "Catalytic thermochemical conversion of biomass for biofuel production: A comprehensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 113(C), pages 1-1.
    8. Li, Jinhu & Burra, Kiran Raj G. & Wang, Zhiwei & Liu, Xuan & Gupta, Ashwani K., 2021. "Co-gasification of high-density polyethylene and pretreated pine wood," Applied Energy, Elsevier, vol. 285(C).
    9. Kang, Kang & Klinghoffer, Naomi B. & ElGhamrawy, Islam & Berruti, Franco, 2021. "Thermochemical conversion of agroforestry biomass and solid waste using decentralized and mobile systems for renewable energy and products," Renewable and Sustainable Energy Reviews, Elsevier, vol. 149(C).
    10. Zhao, Zhong & Feng, Shuo & Zhao, Yaying & Wang, Zhuozhi & Ma, Jiao & Xu, Lianfei & Yang, Jiancheng & Shen, Boxiong, 2022. "Investigation on the fuel quality and hydrophobicity of upgraded rice husk derived from various inert and oxidative torrefaction conditions," Renewable Energy, Elsevier, vol. 189(C), pages 1234-1248.
    11. Yang, Dongtai & Li, Sheng & He, Song, 2024. "Zero/negative carbon emission coal and biomass staged co-gasification power generation system via biomass heating," Applied Energy, Elsevier, vol. 357(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:17:y:2024:i:16:p:4122-:d:1459155. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.