IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v17y2024i16p3933-d1452481.html
   My bibliography  Save this article

Analysis of the Energy Potential of Hazelnut Husk Depending on the Variety

Author

Listed:
  • Anna Borkowska

    (Department of Applied Mathematics and Computer Science, University of Life Sciences in Lublin, Głęboka 28, 20-612 Lublin, Poland)

  • Kamila Klimek

    (Department of Applied Mathematics and Computer Science, University of Life Sciences in Lublin, Głęboka 28, 20-612 Lublin, Poland)

  • Grzegorz Maj

    (Department of Power Engineering and Transportation, University of Life Sciences in Lublin, Głęboka 28, 20-612 Lublin, Poland)

  • Magdalena Kapłan

    (Institute of Horticulture Production, University of Life Sciences in Lublin, Głęboka 28, 20-612 Lublin, Poland)

Abstract

Interest in bioenergy, in particular the use of biomass, has increased significantly in recent years due to increasing climate and economic concerns. As one of the key renewable energy sources, biomass plays an important role in the new energy framework. The aim of this research was to estimate the mass of woody husks and to check the influence of morphological features of selected hazelnut varieties on the energy parameters of waste biomass in the form of husk. Technical and elemental analyses were carried out on the husks of four varieties: ‘Kataloński’, ‘Olbrzymi z Halle’, ‘Olga’, and ‘Webba Cenny’, taking into account their weight, moisture content, heat of combustion (HHV and LHV), and pollutant emission factors (CO, CO 2 , NO x , SO 2 , Dust). Research has shown significant differences between the varieties in terms of their energy potential and pollutant emissions. The varieties ‘Olbrzymi z Halle’ and ‘Olga’ were found to have higher calorific values, making them more energy efficient. On the other hand, the varieties ‘Kataloński’ and ‘Webba Cenny’ showed lower dust and NO x emissions, which is beneficial from an environmental point of view. The analysis of the chemical and morphological composition of hazelnut husks allowed for the identification of relationships between morphological features and energy value and emission indicators. The conclusions from the conducted research suggest that hazelnut husks have significant potential as an energy raw material. The selection of an appropriate variety for energy crops should take into account both the calorific value and emission indicators, which will allow for the optimization of production processes and the promotion of sustainable development.

Suggested Citation

  • Anna Borkowska & Kamila Klimek & Grzegorz Maj & Magdalena Kapłan, 2024. "Analysis of the Energy Potential of Hazelnut Husk Depending on the Variety," Energies, MDPI, vol. 17(16), pages 1-16, August.
  • Handle: RePEc:gam:jeners:v:17:y:2024:i:16:p:3933-:d:1452481
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/17/16/3933/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/17/16/3933/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Andrea Acampora & Vincenzo Civitarese & Giulio Sperandio & Negar Rezaei, 2021. "Qualitative Characterization of the Pellet Obtained from Hazelnut and Olive Tree Pruning," Energies, MDPI, vol. 14(14), pages 1-15, July.
    2. Solarte-Toro, Juan Camilo & González-Aguirre, Jose Andrés & Poveda Giraldo, Jhonny Alejandro & Cardona Alzate, Carlos A., 2021. "Thermochemical processing of woody biomass: A review focused on energy-driven applications and catalytic upgrading," Renewable and Sustainable Energy Reviews, Elsevier, vol. 136(C).
    3. Yarima Torreiro & Leticia Pérez & Gonzalo Piñeiro & Francisco Pedras & Angela Rodríguez-Abalde, 2020. "The Role of Energy Valuation of Agroforestry Biomass on the Circular Economy," Energies, MDPI, vol. 13(10), pages 1-13, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Stachowicz, Paweł & Stolarski, Mariusz J., 2024. "Pellets from mixtures of short rotation coppice with forest-derived biomass: Production costs and energy intensity," Renewable Energy, Elsevier, vol. 225(C).
    2. Mariyam, Sabah & Shahbaz, Muhammad & Al-Ansari, Tareq & Mackey, Hamish. R & McKay, Gordon, 2022. "A critical review on co-gasification and co-pyrolysis for gas production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 161(C).
    3. Leonel J. R. Nunes & Abel M. Rodrigues & João C. O. Matias & Ana I. Ferraz & Ana C. Rodrigues, 2021. "Production of Biochar from Vine Pruning: Waste Recovery in the Wine Industry," Agriculture, MDPI, vol. 11(6), pages 1-15, May.
    4. Wentao Li & Mingfeng Wang & Fanbin Meng & Yifei Zhang & Bo Zhang, 2022. "A Review on the Effects of Pretreatment and Process Parameters on Properties of Pellets," Energies, MDPI, vol. 15(19), pages 1-23, October.
    5. Giulio Sperandio & Alessandro Suardi & Andrea Acampora & Vincenzo Civitarese, 2024. "Eco-Efficiency of Pellet Production from Dedicated Poplar Plantations," Energies, MDPI, vol. 17(13), pages 1-23, June.
    6. Maaz Hassan & Naveed Usman & Majid Hussain & Adnan Yousaf & Muhammad Aamad Khattak & Sidra Yousaf & Rankeshwarnath Sanjay Mishr & Sana Ahmad & Fariha Rehman & Ahmad Rashedi, 2023. "Environmental and Socio-Economic Assessment of Biomass Pellets Biofuel in Hazara Division, Pakistan," Sustainability, MDPI, vol. 15(15), pages 1-23, August.
    7. Douvartzides, Savvas & Charisiou, Nikolaos D. & Wang, Wen & Papadakis, Vagelis G. & Polychronopoulou, Kyriaki & Goula, Maria A., 2022. "Catalytic fast pyrolysis of agricultural residues and dedicated energy crops for the production of high energy density transportation biofuels. Part I: Chemical pathways and bio-oil upgrading," Renewable Energy, Elsevier, vol. 185(C), pages 483-505.
    8. Dimitris Al. Katsaprakakis & Apostolos Michopoulos & Vasiliki Skoulou & Eirini Dakanali & Aggeliki Maragkaki & Stavroula Pappa & Ioannis Antonakakis & Dimitris Christakis & Constantinos Condaxakis, 2022. "A Multidisciplinary Approach for an Effective and Rational Energy Transition in Crete Island, Greece," Energies, MDPI, vol. 15(9), pages 1-49, April.
    9. Shahbeik, Hossein & Peng, Wanxi & Kazemi Shariat Panahi, Hamed & Dehhaghi, Mona & Guillemin, Gilles J. & Fallahi, Alireza & Amiri, Hamid & Rehan, Mohammad & Raikwar, Deepak & Latine, Hannes & Pandalon, 2022. "Synthesis of liquid biofuels from biomass by hydrothermal gasification: A critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 167(C).
    10. José Alberto Soria-González & Raúl Tauro & José Juan Alvarado-Flores & Víctor Manuel Berrueta-Soriano & José Guadalupe Rutiaga-Quiñones, 2022. "Avocado Tree Pruning Pellets ( Persea americana Mill.) for Energy Purposes: Characterization and Quality Evaluation," Energies, MDPI, vol. 15(20), pages 1-18, October.
    11. Leonel J. R. Nunes, 2020. "Torrefied Biomass as an Alternative in Coal-Fueled Power Plants: A Case Study on Grindability of Agroforestry Waste Forms," Clean Technol., MDPI, vol. 2(3), pages 1-20, July.
    12. Mahmoud G. Hemeida & Ashraf M. Hemeida & Tomonobu Senjyu & Dina Osheba, 2022. "Renewable Energy Resources Technologies and Life Cycle Assessment: Review," Energies, MDPI, vol. 15(24), pages 1-36, December.
    13. Stolarski, Mariusz J. & Stachowicz, Paweł & Dudziec, Paweł, 2022. "Wood pellet quality depending on dendromass species," Renewable Energy, Elsevier, vol. 199(C), pages 498-508.
    14. González-Arias, J. & Gómez, X. & González-Castaño, M. & Sánchez, M.E. & Rosas, J.G. & Cara-Jiménez, J., 2022. "Insights into the product quality and energy requirements for solid biofuel production: A comparison of hydrothermal carbonization, pyrolysis and torrefaction of olive tree pruning," Energy, Elsevier, vol. 238(PC).
    15. Leonel J. R. Nunes & Liliana M. E. F. Loureiro & Letícia C. R. Sá & Hugo F. C. Silva, 2020. "Waste Recovery through Thermochemical Conversion Technologies: A Case Study with Several Portuguese Agroforestry By-Products," Clean Technol., MDPI, vol. 2(3), pages 1-15, September.
    16. Luiz Fernando Rodrigues Pinto & Henrricco Nieves Pujol Tucci & Giovanni Mummolo & Geraldo Cardoso de Oliveira Neto & Francesco Facchini, 2022. "Circular Economy Approach on Energy Cogeneration in Petroleum Refining," Energies, MDPI, vol. 15(5), pages 1-15, February.
    17. Bernardine Chigozie Chidozie & Ana Luísa Ramos & José Vasconcelos Ferreira & Luís Pinto Ferreira, 2023. "Residual Agroforestry Biomass Supply Chain Simulation Insights and Directions: A Systematic Literature Review," Sustainability, MDPI, vol. 15(13), pages 1-16, June.
    18. Márcia R. C. Santos & Ana Rolo & Dulce Matos & Luisa Carvalho, 2023. "The Circular Economy in Corporate Reporting: Text Mining of Energy Companies’ Management Reports," Energies, MDPI, vol. 16(15), pages 1-16, August.
    19. Margarida Casau & Marta Ferreira Dias & João C. O. Matias & Leonel J. R. Nunes, 2022. "Residual Biomass: A Comprehensive Review on the Importance, Uses and Potential in a Circular Bioeconomy Approach," Resources, MDPI, vol. 11(4), pages 1-16, March.
    20. Oh, Juhyun & Suh, Dong Hee, 2024. "Exploring the import allocation of wood pellets: Insights from price and policy influences under the renewable portfolio standard," Forest Policy and Economics, Elsevier, vol. 161(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:17:y:2024:i:16:p:3933-:d:1452481. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.