IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v17y2024i15p3846-d1449875.html
   My bibliography  Save this article

Uncertain Scheduling of the Power System Based on Wasserstein Distributionally Robust Optimization and Improved Differential Evolution Algorithm

Author

Listed:
  • Jie Hao

    (School of Electrical Engineering, Northwest Minzu University, Lanzhou 730030, China)

  • Xiuting Guo

    (School of Science, Lanzhou University of Technology, Lanzhou 730050, China)

  • Yan Li

    (School of Electrical Engineering, Northwest Minzu University, Lanzhou 730030, China)

  • Tao Wu

    (School of Electrical Engineering, Northwest Minzu University, Lanzhou 730030, China)

Abstract

The rapid development of renewable energy presents challenges to the security and stability of power systems. Aiming at addressing the power system scheduling problem with load demand and wind power uncertainty, this paper proposes the establishment of different error fuzzy sets based on the Wasserstein probability distance to describe the uncertainties of load and wind power separately. Based on these Wasserstein fuzzy sets, a distributed robust chance-constrained scheduling model was established. In addition, the scheduling model was transformed into a linear programming problem through affine transformation and CVaR approximation. The simplex method and an improved differential evolution algorithm were used to solve the model. Finally, the model and algorithm proposed in this paper were applied to model and solve the economic scheduling problem for the IEEE 6-node system with a wind farm. The results show that the proposed method has better optimization performance than the traditional method.

Suggested Citation

  • Jie Hao & Xiuting Guo & Yan Li & Tao Wu, 2024. "Uncertain Scheduling of the Power System Based on Wasserstein Distributionally Robust Optimization and Improved Differential Evolution Algorithm," Energies, MDPI, vol. 17(15), pages 1-21, August.
  • Handle: RePEc:gam:jeners:v:17:y:2024:i:15:p:3846-:d:1449875
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/17/15/3846/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/17/15/3846/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Tuohy, Aidan & Meibom, Peter & Denny, Eleanor & O'Malley, Mark, 2009. "Unit commitment for systems with significant wind penetration," MPRA Paper 34849, University Library of Munich, Germany.
    2. Yang, Qiangda & Liu, Peng & Zhang, Jie & Dong, Ning, 2022. "Combined heat and power economic dispatch using an adaptive cuckoo search with differential evolution mutation," Applied Energy, Elsevier, vol. 307(C).
    3. Erick Delage & Yinyu Ye, 2010. "Distributionally Robust Optimization Under Moment Uncertainty with Application to Data-Driven Problems," Operations Research, INFORMS, vol. 58(3), pages 595-612, June.
    4. Jin, Xiaoyu & Liu, Benxi & Liao, Shengli & Cheng, Chuntian & Yan, Zhiyu, 2022. "A Wasserstein metric-based distributionally robust optimization approach for reliable-economic equilibrium operation of hydro-wind-solar energy systems," Renewable Energy, Elsevier, vol. 196(C), pages 204-219.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Arash Gourtani & Huifu Xu & David Pozo & Tri-Dung Nguyen, 2016. "Robust unit commitment with $$n-1$$ n - 1 security criteria," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 83(3), pages 373-408, June.
    2. Després, Jacques & Hadjsaid, Nouredine & Criqui, Patrick & Noirot, Isabelle, 2015. "Modelling the impacts of variable renewable sources on the power sector: Reconsidering the typology of energy modelling tools," Energy, Elsevier, vol. 80(C), pages 486-495.
    3. Zhi Chen & Melvyn Sim & Huan Xu, 2019. "Distributionally Robust Optimization with Infinitely Constrained Ambiguity Sets," Operations Research, INFORMS, vol. 67(5), pages 1328-1344, September.
    4. Liu, Benxi & Liu, Tengyuan & Liao, Shengli & Lu, Jia & Cheng, Chuntian, 2023. "Short-term coordinated hybrid hydro-wind-solar optimal scheduling model considering multistage section restrictions," Renewable Energy, Elsevier, vol. 217(C).
    5. Tim Felling & Björn Felten & Paul Osinski & Christoph Weber, 2023. "Assessing Improved Price Zones in Europe: Flow-Based Market Coupling in Central Western Europe in Focus," The Energy Journal, , vol. 44(6), pages 71-112, November.
    6. Vithayasrichareon, Peerapat & MacGill, Iain F., 2013. "Assessing the value of wind generation in future carbon constrained electricity industries," Energy Policy, Elsevier, vol. 53(C), pages 400-412.
    7. Osório, G.J. & Lujano-Rojas, J.M. & Matias, J.C.O. & Catalão, J.P.S., 2015. "A probabilistic approach to solve the economic dispatch problem with intermittent renewable energy sources," Energy, Elsevier, vol. 82(C), pages 949-959.
    8. Jun-ya Gotoh & Michael Jong Kim & Andrew E. B. Lim, 2020. "Worst-case sensitivity," Papers 2010.10794, arXiv.org.
    9. Zhang, Hanxiao & Li, Yan-Fu, 2022. "Robust optimization on redundancy allocation problems in multi-state and continuous-state series–parallel systems," Reliability Engineering and System Safety, Elsevier, vol. 218(PA).
    10. Bingke Yan & Bo Wang & Lin Zhu & Hesen Liu & Yilu Liu & Xingpei Ji & Dichen Liu, 2015. "A Novel, Stable, and Economic Power Sharing Scheme for an Autonomous Microgrid in the Energy Internet," Energies, MDPI, vol. 8(11), pages 1-24, November.
    11. Soonhui Lee & Tito Homem-de-Mello & Anton Kleywegt, 2012. "Newsvendor-type models with decision-dependent uncertainty," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 76(2), pages 189-221, October.
    12. Ruiwei Jiang & Siqian Shen & Yiling Zhang, 2017. "Integer Programming Approaches for Appointment Scheduling with Random No-Shows and Service Durations," Operations Research, INFORMS, vol. 65(6), pages 1638-1656, December.
    13. Xu, Jing & Wang, Xiaoying & Gu, Yujiong & Ma, Suxia, 2023. "A data-based day-ahead scheduling optimization approach for regional integrated energy systems with varying operating conditions," Energy, Elsevier, vol. 283(C).
    14. Katrin Trepper & Michael Bucksteeg & Christoph Weber, 2013. "An integrated approach to model redispatch and to assess potential benefits from market splitting in Germany," EWL Working Papers 1319, University of Duisburg-Essen, Chair for Management Science and Energy Economics, revised Apr 2014.
    15. Gokturk Poyrazoglu & HyungSeon Oh, 2019. "Co-optimization of Transmission Maintenance Scheduling and Production Cost Minimization," Energies, MDPI, vol. 12(15), pages 1-18, July.
    16. Gong, Hailei & Zhang, Zhi-Hai, 2022. "Benders decomposition for the distributionally robust optimization of pricing and reverse logistics network design in remanufacturing systems," European Journal of Operational Research, Elsevier, vol. 297(2), pages 496-510.
    17. Nyamdash, Batsaikhan & Denny, Eleanor, 2013. "The impact of electricity storage on wholesale electricity prices," Energy Policy, Elsevier, vol. 58(C), pages 6-16.
    18. Li, Ling-Ling & Ji, Bing-Xiang & Liu, Guan-Chen & Yuan, Jian-Ping & Tseng, Shuan-Wei & Lim, Ming K. & Tseng, Ming-Lang, 2024. "Grid-connected multi-microgrid system operational scheduling optimization: A hierarchical improved marine predators algorithm," Energy, Elsevier, vol. 294(C).
    19. Viet Anh Nguyen & Fan Zhang & Shanshan Wang & Jose Blanchet & Erick Delage & Yinyu Ye, 2021. "Robustifying Conditional Portfolio Decisions via Optimal Transport," Papers 2103.16451, arXiv.org, revised Apr 2024.
    20. Viet Anh Nguyen & Daniel Kuhn & Peyman Mohajerin Esfahani, 2018. "Distributionally Robust Inverse Covariance Estimation: The Wasserstein Shrinkage Estimator," Papers 1805.07194, arXiv.org.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:17:y:2024:i:15:p:3846-:d:1449875. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.