IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v148y2020icp627-638.html
   My bibliography  Save this article

Numerical and experimental study of a helical Savonius wind turbine and a comparison with a two-stage Savonius turbine

Author

Listed:
  • Kothe, Leonardo Brito
  • Möller, Sérgio Viçosa
  • Petry, Adriane Prisco

Abstract

In this paper, the aerodynamic performance of a helical Savonius rotor model with 180° twisted blades is investigated numerically and experimentally. It is also performed a comparison of results with a two-stage Savonius with similar parameters. The experimental study is conducted in the aerodynamic tunnel Prof. Debi Pada Sadhu at the Fluid Mechanics Laboratory of UFRGS. Numerical simulations are performed using the Finite Volumes Method performed by the solution of the Reynolds Averaged Navier-Stokes (RANS) using the k-ω SST turbulence model. The static torque, dynamic torque and power coefficients are compared. Results show that the turbine has a positive static torque coefficient for any studied rotor angles. The dynamic torque coefficient of the turbine shows less torque variation along each rotation in comparison with a two-stage turbine, reaching the maximum value for a tip speed ratio (λ) of 0.2 for the experimental and numerical cases. The helical turbine, despite having a more complex manufacturing process than the two-stage turbine, presents stable torque and higher power coefficient. The maximum power coefficient of the rotor is obtained for λ of 0.65 for both cases. The numerical simulations and the experimental results present differences between 2.34% and 12.5% in CT and CP values.

Suggested Citation

  • Kothe, Leonardo Brito & Möller, Sérgio Viçosa & Petry, Adriane Prisco, 2020. "Numerical and experimental study of a helical Savonius wind turbine and a comparison with a two-stage Savonius turbine," Renewable Energy, Elsevier, vol. 148(C), pages 627-638.
  • Handle: RePEc:eee:renene:v:148:y:2020:i:c:p:627-638
    DOI: 10.1016/j.renene.2019.10.151
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148119316489
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2019.10.151?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Akwa, João Vicente & Vielmo, Horácio Antonio & Petry, Adriane Prisco, 2012. "A review on the performance of Savonius wind turbines," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(5), pages 3054-3064.
    2. Kamoji, M.A. & Kedare, S.B. & Prabhu, S.V., 2009. "Experimental investigations on single stage modified Savonius rotor," Applied Energy, Elsevier, vol. 86(7-8), pages 1064-1073, July.
    3. Damak, A. & Driss, Z. & Abid, M.S., 2013. "Experimental investigation of helical Savonius rotor with a twist of 180°," Renewable Energy, Elsevier, vol. 52(C), pages 136-142.
    4. Jeon, Keum Soo & Jeong, Jun Ik & Pan, Jae-Kyung & Ryu, Ki-Wahn, 2015. "Effects of end plates with various shapes and sizes on helical Savonius wind turbines," Renewable Energy, Elsevier, vol. 79(C), pages 167-176.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hu, Wenyu & E, Jiaqiang & Leng, Erwei & Zhang, Feng & Chen, Jingwei & Ma, Yinjie, 2023. "Investigation on harvesting characteristics of convective wind energy from vehicle driving on multi-lane highway," Energy, Elsevier, vol. 263(PE).
    2. Hu, Wenyu & E, Jiaqiang & Tan, Yan & Zhang, Feng & Liao, Gaoliang, 2022. "Modified wind energy collection devices for harvesting convective wind energy from cars and trucks moving in the highway," Energy, Elsevier, vol. 247(C).
    3. Zhang, Dayu & Guo, Penghua & Qian, Yuqi & Qiao, Hu & Li, Jingyin, 2024. "Analysis and optimization of a deep-water in-situ power generation system based on novel ductless Archimedes screw hydrokinetic turbines," Renewable Energy, Elsevier, vol. 225(C).
    4. Jesús Rascón & Wildor Gosgot Angeles & Manuel Oliva-Cruz & Miguel Ángel Barrena Gurbillón, 2022. "Wind Characteristics and Wind Energy Potential in Andean Towns in Northern Peru between 2016 and 2020: A Case Study of the City of Chachapoyas," Sustainability, MDPI, vol. 14(10), pages 1-11, May.
    5. Chen, Yunrui & Guo, Penghua & Zhang, Dayu & Chai, Kaixin & Zhao, Chenxi & Li, Jingyin, 2022. "Power improvement of a cluster of three Savonius wind turbines using the variable-speed control method," Renewable Energy, Elsevier, vol. 193(C), pages 832-842.
    6. Anesu Godfrey Chitura & Patrick Mukumba & Ndanduleni Lethole, 2024. "Enhancing the Performance of Savonius Wind Turbines: A Review of Advances Using Multiple Parameters," Energies, MDPI, vol. 17(15), pages 1-17, July.
    7. Reza Norouztabar & Seyed Soheil Mousavi Ajarostaghi & Seyed Sina Mousavi & Payam Nejat & Seyed Saeid Rahimian Koloor & Mohamed Eldessouki, 2022. "On the Performance of a Modified Triple Stack Blade Savonius Wind Turbine as a Function of Geometrical Parameters," Sustainability, MDPI, vol. 14(16), pages 1-26, August.
    8. Kang, Can & Zhao, Hexiang & Zhang, Yongchao & Ding, Kejin, 2021. "Effects of upstream deflector on flow characteristics and startup performance of a drag-type hydrokinetic rotor," Renewable Energy, Elsevier, vol. 172(C), pages 290-303.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kumar, Anuj & Saini, R.P., 2016. "Performance parameters of Savonius type hydrokinetic turbine – A Review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 64(C), pages 289-310.
    2. Noman, Abdullah Al & Tasneem, Zinat & Sahed, Md. Fahad & Muyeen, S.M. & Das, Sajal K. & Alam, Firoz, 2022. "Towards next generation Savonius wind turbine: Artificial intelligence in blade design trends and framework," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
    3. Elbatran, A.H. & Ahmed, Yasser M. & Shehata, Ahmed S., 2017. "Performance study of ducted nozzle Savonius water turbine, comparison with conventional Savonius turbine," Energy, Elsevier, vol. 134(C), pages 566-584.
    4. Ricci, Renato & Romagnoli, Roberto & Montelpare, Sergio & Vitali, Daniele, 2016. "Experimental study on a Savonius wind rotor for street lighting systems," Applied Energy, Elsevier, vol. 161(C), pages 143-152.
    5. Tahani, Mojtaba & Rabbani, Ali & Kasaeian, Alibakhsh & Mehrpooya, Mehdi & Mirhosseini, Mojtaba, 2017. "Design and numerical investigation of Savonius wind turbine with discharge flow directing capability," Energy, Elsevier, vol. 130(C), pages 327-338.
    6. Jeon, Keum Soo & Jeong, Jun Ik & Pan, Jae-Kyung & Ryu, Ki-Wahn, 2015. "Effects of end plates with various shapes and sizes on helical Savonius wind turbines," Renewable Energy, Elsevier, vol. 79(C), pages 167-176.
    7. Roy, Sukanta & Saha, Ujjwal K., 2015. "Wind tunnel experiments of a newly developed two-bladed Savonius-style wind turbine," Applied Energy, Elsevier, vol. 137(C), pages 117-125.
    8. Rengma, Thochi Seb & Subbarao, P.M.V., 2022. "Optimization of semicircular blade profile of Savonius hydrokinetic turbine using artificial neural network," Renewable Energy, Elsevier, vol. 200(C), pages 658-673.
    9. Al-Kayiem, Hussain H. & Bhayo, Bilawal A. & Assadi, Mohsen, 2016. "Comparative critique on the design parameters and their effect on the performance of S-rotors," Renewable Energy, Elsevier, vol. 99(C), pages 1306-1317.
    10. Rostami, Ali Bakhshandeh & Armandei, Mohammadmehdi, 2017. "Renewable energy harvesting by vortex-induced motions: Review and benchmarking of technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 70(C), pages 193-214.
    11. Haddad, Hassan Z. & Mohamed, Mohamed H. & Shabana, Yasser M. & Elsayed, Khairy, 2023. "Optimization of Savonius wind turbine with additional blades by surrogate model using artificial neural networks," Energy, Elsevier, vol. 270(C).
    12. Kacprzak, Konrad & Liskiewicz, Grzegorz & Sobczak, Krzysztof, 2013. "Numerical investigation of conventional and modified Savonius wind turbines," Renewable Energy, Elsevier, vol. 60(C), pages 578-585.
    13. Zhou, Tong & Rempfer, Dietmar, 2013. "Numerical study of detailed flow field and performance of Savonius wind turbines," Renewable Energy, Elsevier, vol. 51(C), pages 373-381.
    14. Salleh, Mohd Badrul & Kamaruddin, Noorfazreena M. & Mohamed-Kassim, Zulfaa, 2022. "Experimental investigation on the effects of deflector angles on the power performance of a Savonius turbine for hydrokinetic applications in small rivers," Energy, Elsevier, vol. 247(C).
    15. Driss, Zied & Mlayeh, Olfa & Driss, Slah & Driss, Dorra & Maaloul, Makram & Abid, Mohamed Salah, 2015. "Study of the bucket design effect on the turbulent flow around unconventional Savonius wind rotors," Energy, Elsevier, vol. 89(C), pages 708-729.
    16. Grönman, Aki & Tiainen, Jonna & Jaatinen-Värri, Ahti, 2019. "Experimental and analytical analysis of vaned savonius turbine performance under different operating conditions," Applied Energy, Elsevier, vol. 250(C), pages 864-872.
    17. Alom, Nur & Saha, Ujjwal K., 2018. "Performance evaluation of vent-augmented elliptical-bladed savonius rotors by numerical simulation and wind tunnel experiments," Energy, Elsevier, vol. 152(C), pages 277-290.
    18. Shayan Farajyar & Farzad Ghafoorian & Mehdi Mehrpooya & Mohammadreza Asadbeigi, 2023. "CFD Investigation and Optimization on the Aerodynamic Performance of a Savonius Vertical Axis Wind Turbine and Its Installation in a Hybrid Power Supply System: A Case Study in Iran," Sustainability, MDPI, vol. 15(6), pages 1-31, March.
    19. Montelpare, Sergio & D'Alessandro, Valerio & Zoppi, Andrea & Ricci, Renato, 2018. "Experimental study on a modified Savonius wind rotor for street lighting systems. Analysis of external appendages and elements," Energy, Elsevier, vol. 144(C), pages 146-158.
    20. Khani, Mohammad Sadegh & Shahsavani, Younes & Mehraein, Mojtaba & Soleimani Rad, Mohammad Hossein & Nikbakhsh, Amir Abbas, 2024. "Evaluation of the performance of the Savonius hydrokinetic turbines in the straight and curved channels using advanced machine learning methods," Energy, Elsevier, vol. 290(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:148:y:2020:i:c:p:627-638. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.