IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v17y2024i15p3606-d1440676.html
   My bibliography  Save this article

Three-Coil Wireless Charging System Based on S-PS Topology

Author

Listed:
  • Kai Yan

    (Shaanxi Provincial Key Laboratory of Oil and Gas Well Measurement and Control Technology, Xi’an Shiyou University, Xi’an 710065, China)

  • Ruirong Dang

    (Shaanxi Provincial Key Laboratory of Oil and Gas Well Measurement and Control Technology, Xi’an Shiyou University, Xi’an 710065, China)

  • Wenzhen Wang

    (Shaanxi Provincial Key Laboratory of Oil and Gas Well Measurement and Control Technology, Xi’an Shiyou University, Xi’an 710065, China)

Abstract

To protect the battery, radio energy transmission charging typically uses constant current (CC) charging before switching to constant voltage (CV) charging to enhance battery durability. This paper proposes adding an auxiliary clamp coil to the original circuit topology. The IPT battery charger designed with the auxiliary clamp coil can achieve both constant current (CC) and constant voltage (CV) outputs. The mutual inductance between the auxiliary clamp coil and the primary side coil greatly influences the output performance of the entire IPT system, so the auxiliary clamp coil should not be too large. To solve this problem, an S-S-PS circuit with secondary compensation topology in the secondary coil is proposed. This circuit topology reduces the size of the auxiliary clamp coil, allowing it to be placed in an optimal position. When the constant voltage output critical position is reached, the IPT system can still automatically, continuously, and smoothly switch between CC and CV modes. Consequently, this approach avoids increased cost consumption associated with detecting CC-CV switching thresholds, adding wireless transmission communication modules, real-time control of the power transmitter, and active protection of the circuit during constant current charging. Finally, a 48 V/2.5 A prototype was built to verify that the IPT system has CC-CV conversion functionality.

Suggested Citation

  • Kai Yan & Ruirong Dang & Wenzhen Wang, 2024. "Three-Coil Wireless Charging System Based on S-PS Topology," Energies, MDPI, vol. 17(15), pages 1-18, July.
  • Handle: RePEc:gam:jeners:v:17:y:2024:i:15:p:3606-:d:1440676
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/17/15/3606/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/17/15/3606/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Sun, Longzhao & Ma, Dianguang & Tang, Houjun, 2018. "A review of recent trends in wireless power transfer technology and its applications in electric vehicle wireless charging," Renewable and Sustainable Energy Reviews, Elsevier, vol. 91(C), pages 490-503.
    2. Frechter, Yotam & Kuperman, Alon, 2020. "Analysis and design of inductive wireless power transfer link for feedback-less power delivery to enclosed compartment," Applied Energy, Elsevier, vol. 278(C).
    3. Cédric Lecluyse & Ben Minnaert & Michael Kleemann, 2021. "A Review of the Current State of Technology of Capacitive Wireless Power Transfer," Energies, MDPI, vol. 14(18), pages 1-22, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Boud Verbrugge & Mohammed Mahedi Hasan & Haaris Rasool & Thomas Geury & Mohamed El Baghdadi & Omar Hegazy, 2021. "Smart Integration of Electric Buses in Cities: A Technological Review," Sustainability, MDPI, vol. 13(21), pages 1-23, November.
    2. Jingang Wang & Chen Shen & Pengcheng Zhao & Shucheng Ou & Zhi Xu & Ruiqiang Zhang & Zhiming Song, 2020. "A Design Method for Magnetically Coupled Resonant Coils Considering Transmission Objectives and Dimension Constraints," Energies, MDPI, vol. 13(16), pages 1-15, August.
    3. Youssef Amry & Elhoussin Elbouchikhi & Franck Le Gall & Mounir Ghogho & Soumia El Hani, 2022. "Electric Vehicle Traction Drives and Charging Station Power Electronics: Current Status and Challenges," Energies, MDPI, vol. 15(16), pages 1-30, August.
    4. Soares, Laura & Wang, Hao, 2022. "A study on renewed perspectives of electrified road for wireless power transfer of electric vehicles," Renewable and Sustainable Energy Reviews, Elsevier, vol. 158(C).
    5. Jacek Maciej Stankiewicz, 2023. "Evaluation of the Influence of the Load Resistance on Power and Efficiency in the Square and Circular Periodic WPT Systems," Energies, MDPI, vol. 16(7), pages 1-19, March.
    6. Darhovsky, Yegal & Mellincovsky, Martin & Baimel, Dmitry & Kuperman, Alon, 2021. "A novel contactless, feedbackless and sensorless power delivery link to electromagnetic levitation melting system residing in sealed compartment," Energy, Elsevier, vol. 231(C).
    7. Jacek Maciej Stankiewicz, 2023. "Analysis of the Wireless Power Transfer System Using a Finite Grid of Planar Circular Coils," Energies, MDPI, vol. 16(22), pages 1-15, November.
    8. Mudassir Khan & A. Ilavendhan & C. Nelson Kennedy Babu & Vishal Jain & S. B. Goyal & Chaman Verma & Calin Ovidiu Safirescu & Traian Candin Mihaltan, 2022. "Clustering Based Optimal Cluster Head Selection Using Bio-Inspired Neural Network in Energy Optimization of 6LowPAN," Energies, MDPI, vol. 15(13), pages 1-14, June.
    9. Ki Hong Kim & Young Jae Han & Sugil Lee & Sung Won Cho & Chulung Lee, 2019. "Text Mining for Patent Analysis to Forecast Emerging Technologies in Wireless Power Transfer," Sustainability, MDPI, vol. 11(22), pages 1-24, November.
    10. Cédric Lecluyse & Ben Minnaert & Michael Kleemann, 2021. "A Review of the Current State of Technology of Capacitive Wireless Power Transfer," Energies, MDPI, vol. 14(18), pages 1-22, September.
    11. Jacek Maciej Stankiewicz & Agnieszka Choroszucho & Adam Steckiewicz, 2021. "Estimation of the Maximum Efficiency and the Load Power in the Periodic WPT Systems Using Numerical and Circuit Models," Energies, MDPI, vol. 14(4), pages 1-20, February.
    12. Kyle John Williams & Kade Wiseman & Sara Deilami & Graham Town & Foad Taghizadeh, 2023. "A Review of Power Transfer Systems for Light Rail Vehicles: The Case for Capacitive Wireless Power Transfer," Energies, MDPI, vol. 16(15), pages 1-26, August.
    13. Jacek Maciej Stankiewicz, 2023. "Analysis of the Influence of the Skin Effect on the Efficiency and Power of the Receiver in the Periodic WPT System," Energies, MDPI, vol. 16(4), pages 1-22, February.
    14. Amjad, Muhammad & Farooq-i-Azam, Muhammad & Ni, Qiang & Dong, Mianxiong & Ansari, Ejaz Ahmad, 2022. "Wireless charging systems for electric vehicles," Renewable and Sustainable Energy Reviews, Elsevier, vol. 167(C).
    15. Andong Yin & Shenchun Wu & Weihan Li & Jinfang Hu, 2019. "Analysis of Battery Reduction for an Improved Opportunistic Wireless-Charged Electric Bus," Energies, MDPI, vol. 12(15), pages 1-24, July.
    16. Linlin Tan & Wenxuan Zhao & Minghao Ju & Han Liu & Xueliang Huang, 2019. "Research on an EV Dynamic Wireless Charging Control Method Adapting to Speed Change," Energies, MDPI, vol. 12(11), pages 1-13, June.
    17. Kalina Detka & Krzysztof Górecki, 2022. "Wireless Power Transfer—A Review," Energies, MDPI, vol. 15(19), pages 1-21, October.
    18. Ching-Yao Liu & Chih-Chiang Wu & Li-Chuan Tang & Yueh-Tsung Shieh & Wei-Hua Chieng & Edward-Yi Chang, 2023. "Resonant Mechanism for a Long-Distance Wireless Power Transfer Using Class E PA and GaN HEMT," Energies, MDPI, vol. 16(9), pages 1-21, April.
    19. Ahmed A. S. Mohamed & Ahmed A. Shaier & Hamid Metwally & Sameh I. Selem, 2022. "An Overview of Dynamic Inductive Charging for Electric Vehicles," Energies, MDPI, vol. 15(15), pages 1-59, August.
    20. Bo Dong & Yang Chen & Jing Lian & Xiaohui Qu, 2022. "A Novel Compensation Circuit for Capacitive Power Transfer System to Realize Desired Constant Current and Constant Voltage Output," Energies, MDPI, vol. 15(4), pages 1-18, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:17:y:2024:i:15:p:3606-:d:1440676. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.