IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v17y2024i14p3546-d1438491.html
   My bibliography  Save this article

Partial Shading of Photovoltaic Modules with Thin Linear Objects: Modelling in MATLAB Environment and Measurement Experiments

Author

Listed:
  • Janusz Teneta

    (AGH University of Krakow, Faculty of Electrical Engineering, Automatics, Computer Science and Biomedical Engineering, Al. Mickiewicza 30, 30-059 Krakow, Poland)

  • Wojciech Kreft

    (AGH University of Krakow, Faculty of Electrical Engineering, Automatics, Computer Science and Biomedical Engineering, Al. Mickiewicza 30, 30-059 Krakow, Poland)

  • Mirosław Janowski

    (AGH University of Krakow, Faculty of Geology, Geophysics and Environmental Protection, Al. Mickiewicza 30, 30-059 Krakow, Poland)

Abstract

This paper proposes a mathematical model for the shading profiles of a PV module with thin, long linear elements. The model includes the brightness distribution over the entire shading region (umbra, penumbra, and antumbra). A corresponding calculation code in the form of m-files has been prepared for the MATLAB environment. The input data for the calculations are the coordinates of the Sun’s position in the sky, the dimensions and spatial orientation of the shading element, and the spatial orientation of the shaded PV module. The correctness of the model was verified by a measurement experiment carried out under actual outdoor weather conditions. Statistical analysis of the comparison between the measurement data from the experiment and the model showed its high accuracy. As part of this research work, it was also checked how shading with thin linear elements affects the current–voltage characteristics of the module. It turned out that even a small linear shading could reduce the power output of the module by more than 6%, with the distribution of this shading across the individual cells of the module being extremely important.

Suggested Citation

  • Janusz Teneta & Wojciech Kreft & Mirosław Janowski, 2024. "Partial Shading of Photovoltaic Modules with Thin Linear Objects: Modelling in MATLAB Environment and Measurement Experiments," Energies, MDPI, vol. 17(14), pages 1-26, July.
  • Handle: RePEc:gam:jeners:v:17:y:2024:i:14:p:3546-:d:1438491
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/17/14/3546/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/17/14/3546/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Belhaouas, N. & Cheikh, M.-S. Ait & Agathoklis, P. & Oularbi, M.-R. & Amrouche, B. & Sedraoui, K. & Djilali, N., 2017. "PV array power output maximization under partial shading using new shifted PV array arrangements," Applied Energy, Elsevier, vol. 187(C), pages 326-337.
    2. Murugesan, Palpandian & David, Prince Winston & Murugesan, Pravin & Periyasamy, Pounraj, 2023. "Battery based mismatch reduction technique for partial shaded solar PV system," Energy, Elsevier, vol. 272(C).
    3. Ragb, Ola & Bakr, Hanan, 2023. "A new technique for estimation of photovoltaic system and tracking power peaks of PV array under partial shading," Energy, Elsevier, vol. 268(C).
    4. Satpathy, Priya Ranjan & Aljafari, Belqasem & Thanikanti, Sudhakar Babu & Sharma, Renu, 2023. "An efficient power extraction technique for improved performance and reliability of solar PV arrays during partial shading," Energy, Elsevier, vol. 282(C).
    5. Pillai, Dhanup S. & Ram, J. Prasanth & Shabunko, Veronika & Kim, Young-Jin, 2021. "A new shade dispersion technique compatible for symmetrical and unsymmetrical photovoltaic (PV) arrays," Energy, Elsevier, vol. 225(C).
    6. Luo, Yongqiang & Zhang, Ling & Su, Xiaosong & Liu, Zhongbing & Lian, Jinbu & Luo, Yongwei, 2019. "Improved thermal-electrical-optical model and performance assessment of a PV-blind embedded glazing façade system with complex shading effects," Applied Energy, Elsevier, vol. 255(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. P, Aravind & D, Prince Winston & S, Sugumar & M, Pravin, 2024. "Optimal battery based electrical reconfiguration technique for partial shaded PV system," Applied Energy, Elsevier, vol. 361(C).
    2. Rezk, Hegazy & AL-Oran, Mazen & Gomaa, Mohamed R. & Tolba, Mohamed A. & Fathy, Ahmed & Abdelkareem, Mohammad Ali & Olabi, A.G. & El-Sayed, Abou Hashema M., 2019. "A novel statistical performance evaluation of most modern optimization-based global MPPT techniques for partially shaded PV system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 115(C).
    3. Alharbi, Abdullah G. & Fathy, Ahmed & Rezk, Hegazy & Abdelkareem, Mohammad Ali & Olabi, A.G., 2023. "An efficient war strategy optimization reconfiguration method for improving the PV array generated power," Energy, Elsevier, vol. 283(C).
    4. Ju, Xing & Pan, Xinyu & Zhang, Zheyang & Xu, Chao & Wei, Gaosheng, 2019. "Thermal and electrical performance of the dense-array concentrating photovoltaic (DA-CPV) system under non-uniform illumination," Applied Energy, Elsevier, vol. 250(C), pages 904-915.
    5. Murugesan, Palpandian & David, Prince Winston & Murugesan, Pravin & Periyasamy, Pounraj, 2023. "Battery based mismatch reduction technique for partial shaded solar PV system," Energy, Elsevier, vol. 272(C).
    6. Wang, Qin & Yao, Wei & Fang, Jiakun & Ai, Xiaomeng & Wen, Jinyu & Yang, Xiaobo & Xie, Hailian & Huang, Xing, 2020. "Dynamic modeling and small signal stability analysis of distributed photovoltaic grid-connected system with large scale of panel level DC optimizers," Applied Energy, Elsevier, vol. 259(C).
    7. Ranjbaran, Parisa & Yousefi, Hossein & Gharehpetian, G.B. & Astaraei, Fatemeh Razi, 2019. "A review on floating photovoltaic (FPV) power generation units," Renewable and Sustainable Energy Reviews, Elsevier, vol. 110(C), pages 332-347.
    8. Vavilapalli, Sridhar & Umashankar, S. & Sanjeevikumar, P. & Ramachandaramurthy, Vigna K. & Mihet-Popa, Lucian & Fedák, Viliam, 2018. "Three-stage control architecture for cascaded H-Bridge inverters in large-scale PV systems – Real time simulation validation," Applied Energy, Elsevier, vol. 229(C), pages 1111-1127.
    9. Malathy, S. & Ramaprabha, R., 2018. "Reconfiguration strategies to extract maximum power from photovoltaic array under partially shaded conditions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P2), pages 2922-2934.
    10. Nicoletti, Francesco & Cucumo, Mario Antonio & Arcuri, Natale, 2023. "Building-integrated photovoltaics (BIPV): A mathematical approach to evaluate the electrical production of solar PV blinds," Energy, Elsevier, vol. 263(PD).
    11. Ahmad, Riaz & Murtaza, Ali F. & Sher, Hadeed Ahmed, 2019. "Power tracking techniques for efficient operation of photovoltaic array in solar applications – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 101(C), pages 82-102.
    12. Spiliotis, Konstantinos & Gonçalves, Juliana E. & Saelens, Dirk & Baert, Kris & Driesen, Johan, 2020. "Electrical system architectures for building-integrated photovoltaics: A comparative analysis using a modelling framework in Modelica," Applied Energy, Elsevier, vol. 261(C).
    13. Woo Gyun Shin & Suk Whan Ko & Hyung Jun Song & Young Chul Ju & Hye Mi Hwang & Gi Hwan Kang, 2018. "Origin of Bypass Diode Fault in c-Si Photovoltaic Modules: Leakage Current under High Surrounding Temperature," Energies, MDPI, vol. 11(9), pages 1-11, September.
    14. Belqasem Aljafari & Rupendra Kumar Pachauri & Sudhakar Babu Thanikanti & Bamidele Victor Ayodele, 2023. "Innovative Methodologies for Higher Global MPP of Photovoltaic Arrays under PSCs: Experimental Validation," Sustainability, MDPI, vol. 15(15), pages 1-28, August.
    15. Luis D. Murillo-Soto & Carlos Meza, 2021. "Automated Fault Management System in a Photovoltaic Array: A Reconfiguration-Based Approach," Energies, MDPI, vol. 14(9), pages 1-19, April.
    16. Yadav, Anurag Singh & Mukherjee, V., 2022. "Comprehensive investigation of various bypass diode associations for killer-SuDoKu PV array under several shading conditions," Energy, Elsevier, vol. 239(PB).
    17. Catalina González-Castaño & Carlos Restrepo & Javier Revelo-Fuelagán & Leandro L. Lorente-Leyva & Diego H. Peluffo-Ordóñez, 2021. "A Fast-Tracking Hybrid MPPT Based on Surface-Based Polynomial Fitting and P&O Methods for Solar PV under Partial Shaded Conditions," Mathematics, MDPI, vol. 9(21), pages 1-23, October.
    18. Chen, Xiaoyang & Du, Yang & Lim, Enggee & Wen, Huiqing & Yan, Ke & Kirtley, James, 2020. "Power ramp-rates of utility-scale PV systems under passing clouds: Module-level emulation with cloud shadow modeling," Applied Energy, Elsevier, vol. 268(C).
    19. Wu, Zhenghong & Zhang, Ling & Su, Xiaosong & Wu, Jing & Liu, Zhongbing, 2022. "Experimental and numerical analysis of naturally ventilated PV-DSF in a humid subtropical climate," Renewable Energy, Elsevier, vol. 200(C), pages 633-646.
    20. Dushan Fernando & Satheeskumar Navaratnam & Pathmanathan Rajeev & Jay Sanjayan, 2023. "Study of Technological Advancement and Challenges of Façade System for Sustainable Building: Current Design Practice," Sustainability, MDPI, vol. 15(19), pages 1-33, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:17:y:2024:i:14:p:3546-:d:1438491. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.