IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v17y2024i14p3504-d1436875.html
   My bibliography  Save this article

Research on the Design of a MIMO Management System for Lithium-Ion Batteries Based on Radiation–Conductivity–Convection Coupled Thermal Analysis

Author

Listed:
  • Qian Wang

    (School of Automation and Software Engineering, Shanxi University, Taiyuan 030006, China)

  • Linbin Yan

    (School of Automation and Software Engineering, Shanxi University, Taiyuan 030006, China)

  • Lushi Yang

    (School of Automation and Software Engineering, Shanxi University, Taiyuan 030006, China)

  • Jianxiao Wang

    (National Engineering Laboratory of Big Data Analytics and Application Technology, Peking University, Beijing 100871, China)

Abstract

In this study, the heat transfer model of a radiation–conduction–convection coupled lithium-ion battery pack is established through theoretical analysis. The temperature distribution and flow field distribution inside the battery pack are obtained by simulation using ANSYS Fluent software 2022 R1, and the reasonableness of the simulation model is verified with an experiment. This study also analyzes in detail the improvement effect of adding heat dissipation ribs, applying heat dissipation coatings, and adjusting the fan speed on the heat dissipation performance of the system. Under the same heat sink rib height conditions, the relationship between its thickness and total heat dissipation and thermal efficiency is studied in depth, and the temperature distribution of the cell under different rib thicknesses is obtained. At the same time, the emissivity of the heat sink coating under different coating thicknesses was measured by infrared thermography, and the relevant design values were determined through simulation experiments. Finally, based on the experimental test results of fan performance, a corresponding control strategy is proposed to construct an efficient and high-performance multiple-input multiple-output (MIMO) battery thermal management system. The experimental results show that optimizing the structure of the forced air cooling system through the above measures can ensure that the Li-ion battery operates within the efficient operating temperature range, thus extending its cycle life, improving its stability, and reducing the risk of thermal runaway. Meanwhile, the problem of excessive temperature difference between different modules is improved, and the output capacity of the energy storage system is increased.

Suggested Citation

  • Qian Wang & Linbin Yan & Lushi Yang & Jianxiao Wang, 2024. "Research on the Design of a MIMO Management System for Lithium-Ion Batteries Based on Radiation–Conductivity–Convection Coupled Thermal Analysis," Energies, MDPI, vol. 17(14), pages 1-20, July.
  • Handle: RePEc:gam:jeners:v:17:y:2024:i:14:p:3504-:d:1436875
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/17/14/3504/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/17/14/3504/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Basu, Suman & Hariharan, Krishnan S. & Kolake, Subramanya Mayya & Song, Taewon & Sohn, Dong Kee & Yeo, Taejung, 2016. "Coupled electrochemical thermal modelling of a novel Li-ion battery pack thermal management system," Applied Energy, Elsevier, vol. 181(C), pages 1-13.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kumar, Kartik & Sarkar, Jahar & Mondal, Swasti Sundar, 2024. "Analysis of ternary hybrid nanofluid in microchannel-cooled cylindrical Li-ion battery pack using multi-scale multi-domain framework," Applied Energy, Elsevier, vol. 355(C).
    2. Chen, Kai & Wu, Weixiong & Yuan, Fang & Chen, Lin & Wang, Shuangfeng, 2019. "Cooling efficiency improvement of air-cooled battery thermal management system through designing the flow pattern," Energy, Elsevier, vol. 167(C), pages 781-790.
    3. Rajib Mahamud & Chanwoo Park, 2022. "Theory and Practices of Li-Ion Battery Thermal Management for Electric and Hybrid Electric Vehicles," Energies, MDPI, vol. 15(11), pages 1-45, May.
    4. Qaderi, Alireza & Veysi, Farzad, 2022. "Investigation of a water-NEPCM cooling thermal management system for cylindrical 18650 Li-ion batteries," Energy, Elsevier, vol. 244(PA).
    5. Anandh Ramesh Babu & Jelena Andric & Blago Minovski & Simone Sebben, 2021. "System-Level Modeling and Thermal Simulations of Large Battery Packs for Electric Trucks," Energies, MDPI, vol. 14(16), pages 1-15, August.
    6. Yijun Li & Stéphane Roux & Cathy Castelain & Yilin Fan & Lingai Luo, 2023. "Design and Optimization of Heat Sinks for the Liquid Cooling of Electronics with Multiple Heat Sources: A Literature Review," Energies, MDPI, vol. 16(22), pages 1-26, November.
    7. Shan, Shuai & Li, Li & Xu, Qiang & Ling, Lei & Xie, Yajun & Wang, Hongkang & Zheng, Keqing & Zhang, Lanchun & Bei, Shaoyi, 2023. "Numerical investigation of a compact and lightweight thermal management system with axially mounted cooling tubes for cylindrical lithium-ion battery module," Energy, Elsevier, vol. 274(C).
    8. Bizhong Xia & Zhen Sun & Ruifeng Zhang & Zizhou Lao, 2017. "A Cubature Particle Filter Algorithm to Estimate the State of the Charge of Lithium-Ion Batteries Based on a Second-Order Equivalent Circuit Model," Energies, MDPI, vol. 10(4), pages 1-15, April.
    9. Xie, Jiahang & Yang, Rufan & Gooi, Hoay Beng & Nguyen, Hung Dinh, 2023. "PID-based CNN-LSTM for accuracy-boosted virtual sensor in battery thermal management system," Applied Energy, Elsevier, vol. 331(C).
    10. Sheng, Lei & Zhang, Hengyun & Su, Lin & Zhang, Zhendong & Zhang, Hua & Li, Kang & Fang, Yidong & Ye, Wen, 2021. "Effect analysis on thermal profile management of a cylindrical lithium-ion battery utilizing a cellular liquid cooling jacket," Energy, Elsevier, vol. 220(C).
    11. Saw, Lip Huat & Ye, Yonghuang & Yew, Ming Chian & Chong, Wen Tong & Yew, Ming Kun & Ng, Tan Ching, 2017. "Computational fluid dynamics simulation on open cell aluminium foams for Li-ion battery cooling system," Applied Energy, Elsevier, vol. 204(C), pages 1489-1499.
    12. Saw, Lip Huat & Poon, Hiew Mun & Thiam, Hui San & Cai, Zuansi & Chong, Wen Tong & Pambudi, Nugroho Agung & King, Yeong Jin, 2018. "Novel thermal management system using mist cooling for lithium-ion battery packs," Applied Energy, Elsevier, vol. 223(C), pages 146-158.
    13. Chen, Quanyi & Zhang, Xuan & Nie, Pengbo & Zhang, Siwei & Wei, Guodan & Sun, Hongbin, 2023. "A fast thermal simulation and dynamic feedback control framework for lithium-ion batteries," Applied Energy, Elsevier, vol. 350(C).
    14. Meng, He & Jia, Hongjie & Xu, Tao & Wei, Wei & Wu, Yuhan & Liang, Lemeng & Cai, Shuqi & Liu, Zuozheng & Wang, Rujing & Li, Mengchao, 2022. "Optimal configuration of cooperative stationary and mobile energy storage considering ambient temperature: A case for Winter Olympic Game," Applied Energy, Elsevier, vol. 325(C).
    15. Miquel Martí-Florences & Andreu Cecilia & Ramon Costa-Castelló, 2023. "Modelling and Estimation in Lithium-Ion Batteries: A Literature Review," Energies, MDPI, vol. 16(19), pages 1-36, September.
    16. He, Tengfei & Zhang, Teng & Wang, Zhirong & Cai, Qiong, 2022. "A comprehensive numerical study on electrochemical-thermal models of a cylindrical lithium-ion battery during discharge process," Applied Energy, Elsevier, vol. 313(C).
    17. Astaneh, Majid & Andric, Jelena & Löfdahl, Lennart & Stopp, Peter, 2022. "Multiphysics simulation optimization framework for lithium-ion battery pack design for electric vehicle applications," Energy, Elsevier, vol. 239(PB).
    18. Wang, Qinggong & Yao, Wei & Zhang, Hui & Lu, Xiaochen, 2018. "Analysis of the performance of an alkali metal thermoelectric converter (AMTEC) based on a lumped thermal-electrochemical model," Applied Energy, Elsevier, vol. 216(C), pages 195-211.
    19. Noelle, Daniel J. & Wang, Meng & Le, Anh V. & Shi, Yang & Qiao, Yu, 2018. "Internal resistance and polarization dynamics of lithium-ion batteries upon internal shorting," Applied Energy, Elsevier, vol. 212(C), pages 796-808.
    20. Kim, Hong-Keun & Lee, Kyu-Jin, 2023. "Use of a multiphysics model to investigate the performance and degradation of lithium-ion battery packs with different electrical configurations," Energy, Elsevier, vol. 262(PB).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:17:y:2024:i:14:p:3504-:d:1436875. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.