IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v17y2024i13p3251-d1427411.html
   My bibliography  Save this article

Research on a Distributed Photovoltaic Two-Level Planning Method Based on the SCMPSO Algorithm

Author

Listed:
  • Ang Dong

    (Department of Energy and Electrical Engineering, Woosuk University, Jeonju 376-701, Republic of Korea
    Electrical Engineering and Automation, School of Physics and Electronic Engineering, Yan Cheng Teachers University, Yancheng 224002, China)

  • Seon-Keun Lee

    (Department of Energy and Electrical Engineering, Woosuk University, Jeonju 376-701, Republic of Korea)

Abstract

In response to challenges such as voltage limit violations, excessive currents, and power imbalances caused by the integration of distributed photovoltaic (distributed PV) systems into the distribution network, this study proposes at two-level optimization configuration method. This method effectively balances the grid capacity and reduces the active power losses, thereby decreasing the operating costs. The upper-level optimization enhances the distribution network’s capacity by determining the siting and sizing of distributed PV devices. The lower-level aims to reduce the active power losses, improve the voltage stability margins, and minimize the voltage deviations. The upper-level planning results, which include the siting and sizing of the distributed PV, are used as initial conditions for the lower level. Subsequently, the lower level feeds back its optimization results to further refine the configuration. The model is solved using an improved second-order oscillating chaotic map particle swarm optimization algorithm (SCMPSO) combined with a second-order relaxation method. The simulation experiments on an improved IEEE 33-bus test system show that the SCMPSO algorithm can effectively reduce the voltage deviations, decrease the voltage fluctuations, lower the active power losses in the distribution network, and significantly enhance the power quality.

Suggested Citation

  • Ang Dong & Seon-Keun Lee, 2024. "Research on a Distributed Photovoltaic Two-Level Planning Method Based on the SCMPSO Algorithm," Energies, MDPI, vol. 17(13), pages 1-20, July.
  • Handle: RePEc:gam:jeners:v:17:y:2024:i:13:p:3251-:d:1427411
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/17/13/3251/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/17/13/3251/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Jain, Akshay Kumar & Horowitz, Kelsey & Ding, Fei & Sedzro, Kwami Senam & Palmintier, Bryan & Mather, Barry & Jain, Himanshu, 2020. "Dynamic hosting capacity analysis for distributed photovoltaic resources—Framework and case study," Applied Energy, Elsevier, vol. 280(C).
    2. Rahdan, Parisa & Zeyen, Elisabeth & Gallego-Castillo, Cristobal & Victoria, Marta, 2024. "Distributed photovoltaics provides key benefits for a highly renewable European energy system," Applied Energy, Elsevier, vol. 360(C).
    3. Pereira, Luan D.L. & Yahyaoui, Imene & Fiorotti, Rodrigo & de Menezes, Luíza S. & Fardin, Jussara F. & Rocha, Helder R.O. & Tadeo, Fernando, 2022. "Optimal allocation of distributed generation and capacitor banks using probabilistic generation models with correlations," Applied Energy, Elsevier, vol. 307(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Abdullah M. Shaheen & Ehab E. Elattar & Nadia A. Nagem & Asmaa F. Nasef, 2023. "Allocation of PV Systems with Volt/Var Control Based on Automatic Voltage Regulators in Active Distribution Networks," Sustainability, MDPI, vol. 15(21), pages 1-23, November.
    2. Md Tariqul Islam & M. J. Hossain, 2023. "Artificial Intelligence for Hosting Capacity Analysis: A Systematic Literature Review," Energies, MDPI, vol. 16(4), pages 1-33, February.
    3. Azeredo, Lucas F.S. & Yahyaoui, Imene & Fiorotti, Rodrigo & Fardin, Jussara F. & Garcia-Pereira, Hilel & Rocha, Helder R.O., 2023. "Study of reducing losses, short-circuit currents and harmonics by allocation of distributed generation, capacitor banks and fault current limiters in distribution grids," Applied Energy, Elsevier, vol. 350(C).
    4. Rocha, Helder R.O. & Fiorotti, Rodrigo & Louzada, Danilo M. & Silvestre, Leonardo J. & Celeste, Wanderley C. & Silva, Jair A.L., 2024. "Net Zero Energy cost Building system design based on Artificial Intelligence," Applied Energy, Elsevier, vol. 355(C).
    5. Ahmed O. Badr & Abdulsalam A. Aloukili & Metwally A. El-Sharkawy & Mariam A. Sameh & Mahmoud A. Attia, 2022. "Compensation of Distributed Generations Outage Using Controlled Switched Capacitors," Sustainability, MDPI, vol. 14(23), pages 1-24, December.
    6. Yujuan Yang & Ronghua Wu & Yuanbo Yue & Yao Zhang & Yuanyuan Sun & Shunjie Liu, 2023. "Heating Performance and Economic Analysis of Solar-Assisted Cold-Water Phase-Change-Energy Heat Pump System in Series and Parallel Connections," Energies, MDPI, vol. 16(16), pages 1-21, August.
    7. Hwang, Hyunkyeong & Yoon, Ahyun & Yoon, Yongtae & Moon, Seungil, 2023. "Demand response of HVAC systems for hosting capacity improvement in distribution networks: A comprehensive review and case study," Renewable and Sustainable Energy Reviews, Elsevier, vol. 187(C).
    8. Jude Suchithra & Duane Robinson & Amin Rajabi, 2023. "Hosting Capacity Assessment Strategies and Reinforcement Learning Methods for Coordinated Voltage Control in Electricity Distribution Networks: A Review," Energies, MDPI, vol. 16(5), pages 1-28, March.
    9. Ramón E. De-Jesús-Grullón & Rafael Omar Batista Jorge & Abraham Espinal Serrata & Justin Eladio Bueno Díaz & Juan José Pichardo Estévez & Nestor Francisco Guerrero-Rodríguez, 2024. "Modeling and Simulation of Distribution Networks with High Renewable Penetration in Open-Source Software: QGIS and OpenDSS," Energies, MDPI, vol. 17(12), pages 1-19, June.
    10. Rajabi, A. & Elphick, S. & David, J. & Pors, A. & Robinson, D., 2022. "Innovative approaches for assessing and enhancing the hosting capacity of PV-rich distribution networks: An Australian perspective," Renewable and Sustainable Energy Reviews, Elsevier, vol. 161(C).
    11. Luis A. Gallego Pareja & Jesús M. López-Lezama & Oscar Gómez Carmona, 2023. "A MILP Model for Optimal Conductor Selection and Capacitor Banks Placement in Primary Distribution Systems," Energies, MDPI, vol. 16(11), pages 1-21, May.
    12. Zulfiqar Ali Memon & Mohammad Amin Akbari, 2023. "Optimizing Hybrid Photovoltaic/Battery/Diesel Microgrids in Distribution Networks Considering Uncertainty and Reliability," Sustainability, MDPI, vol. 15(18), pages 1-23, September.
    13. Zabihinia Gerdroodbari, Yasin & Khorasany, Mohsen & Razzaghi, Reza, 2022. "Dynamic PQ Operating Envelopes for prosumers in distribution networks," Applied Energy, Elsevier, vol. 325(C).
    14. Jin-Sol Song & Ji-Soo Kim & Barry Mather & Chul-Hwan Kim, 2021. "Hosting Capacity Improvement Method Using MV–MV Solid-State-Transformer," Energies, MDPI, vol. 14(3), pages 1-12, January.
    15. Huang, Nantian & Zhao, Xuanyuan & Guo, Yu & Cai, Guowei & Wang, Rijun, 2023. "Distribution network expansion planning considering a distributed hydrogen-thermal storage system based on photovoltaic development of the Whole County of China," Energy, Elsevier, vol. 278(C).
    16. Zhu Liu & Wenshan Hu & Guowei Guo & Jinfeng Wang & Lingfeng Xuan & Feiwu He & Dongguo Zhou, 2024. "A Graph-Based Genetic Algorithm for Distributed Photovoltaic Cluster Partitioning," Energies, MDPI, vol. 17(12), pages 1-17, June.
    17. Zohaib Hussain Leghari & Mahesh Kumar & Pervez Hameed Shaikh & Laveet Kumar & Quynh T. Tran, 2022. "A Critical Review of Optimization Strategies for Simultaneous Integration of Distributed Generation and Capacitor Banks in Power Distribution Networks," Energies, MDPI, vol. 15(21), pages 1-40, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:17:y:2024:i:13:p:3251-:d:1427411. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.