IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v17y2024i13p3240-d1427145.html
   My bibliography  Save this article

Constructing Interval Forecasts for Solar and Wind Energy Using Quantile Regression, ARCH and Exponential Smoothing Methods

Author

Listed:
  • John Boland

    (Industrial AI Research Centre, University of South Australia, Mawson Lakes Boulevard, Mawson Lakes, SA 5095, Australia)

Abstract

The research reported in this article focuses on a comparison of two different approaches to setting error bounds, or prediction intervals, on short-term forecasting of solar irradiation as well as solar and wind farm output. Short term in this instance relates to the time scales applicable in the Australian National Electricity Market (NEM), which operates on a five-minute basis throughout the year. The Australian Energy Market Operator (AEMO) has decided in recent years that, as well as point forecasts of energy, it is advantageous for planning purposes to have error bounds on those forecasts. We use quantile regression as one of the techniques to construct the bounds. This procedure is compared to a method of forecasting the conditional variance by use of either ARCH/GARCH or exponential smoothing, whichever is more appropriate for the specific application. The noise terms for these techniques must undergo a normalising transformation before their application. It seems that, for certain applications, quantile regression performs better, and the other technique for some other applications.

Suggested Citation

  • John Boland, 2024. "Constructing Interval Forecasts for Solar and Wind Energy Using Quantile Regression, ARCH and Exponential Smoothing Methods," Energies, MDPI, vol. 17(13), pages 1-17, July.
  • Handle: RePEc:gam:jeners:v:17:y:2024:i:13:p:3240-:d:1427145
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/17/13/3240/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/17/13/3240/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Wang, Jianzhou & Wang, Shuai & Zeng, Bo & Lu, Haiyan, 2022. "A novel ensemble probabilistic forecasting system for uncertainty in wind speed," Applied Energy, Elsevier, vol. 313(C).
    2. Engle, Robert F, 1982. "Autoregressive Conditional Heteroscedasticity with Estimates of the Variance of United Kingdom Inflation," Econometrica, Econometric Society, vol. 50(4), pages 987-1007, July.
    3. Alessandrini, S. & Delle Monache, L. & Sperati, S. & Cervone, G., 2015. "An analog ensemble for short-term probabilistic solar power forecast," Applied Energy, Elsevier, vol. 157(C), pages 95-110.
    4. John Boland & Adrian Grantham, 2018. "Nonparametric Conditional Heteroscedastic Hourly Probabilistic Forecasting of Solar Radiation," J, MDPI, vol. 1(1), pages 1-18, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. David, Mathieu & Luis, Mazorra Aguiar & Lauret, Philippe, 2018. "Comparison of intraday probabilistic forecasting of solar irradiance using only endogenous data," International Journal of Forecasting, Elsevier, vol. 34(3), pages 529-547.
    2. Emeka Nkoro & Aham Kelvin Uko, 2016. "Exchange Rate and Inflation Volatility and Stock Prices Volatility: Evidence from Nigeria, 1986-2012," Journal of Applied Finance & Banking, SCIENPRESS Ltd, vol. 6(6), pages 1-4.
    3. Minot, Nicholas, 2014. "Food price volatility in sub-Saharan Africa: Has it really increased?," Food Policy, Elsevier, vol. 45(C), pages 45-56.
    4. Shively, Gerald E., 2001. "Price thresholds, price volatility, and the private costs of investment in a developing country grain market," Economic Modelling, Elsevier, vol. 18(3), pages 399-414, August.
    5. Athanasopoulos, George & de Carvalho Guillén, Osmani Teixeira & Issler, João Victor & Vahid, Farshid, 2011. "Model selection, estimation and forecasting in VAR models with short-run and long-run restrictions," Journal of Econometrics, Elsevier, vol. 164(1), pages 116-129, September.
    6. Eric Ghysels & Leonardo Iania & Jonas Striaukas, 2018. "Quantile-based Inflation Risk Models," Working Paper Research 349, National Bank of Belgium.
    7. Marfatia, Hardik A., 2017. "A fresh look at integration of risks in the international stock markets: A wavelet approach," Review of Financial Economics, Elsevier, vol. 34(C), pages 33-49.
    8. Tomanova, Lucie, 2013. "Exchange Rate Volatility and the Foreign Trade in CEEC," EY International Congress on Economics I (EYC2013), October 24-25, 2013, Ankara, Turkey 267, Ekonomik Yaklasim Association.
    9. Coudert, Virginie & Mignon, Valérie, 2013. "The “forward premium puzzle” and the sovereign default risk," Journal of International Money and Finance, Elsevier, vol. 32(C), pages 491-511.
    10. Bernard, Jean-Thomas & Idoudi, Nadhem & Khalaf, Lynda & Yelou, Clement, 2007. "Finite sample multivariate structural change tests with application to energy demand models," Journal of Econometrics, Elsevier, vol. 141(2), pages 1219-1244, December.
    11. Tian, Runze & Kou, Peng & Zhang, Yuanhang & Mei, Mingyang & Zhang, Zhihao & Liang, Deliang, 2024. "Residual-connected physics-informed neural network for anti-noise wind field reconstruction," Applied Energy, Elsevier, vol. 357(C).
    12. Chang, Chia-Lin, 2015. "Modelling a latent daily Tourism Financial Conditions Index," International Review of Economics & Finance, Elsevier, vol. 40(C), pages 113-126.
    13. Bierens, H.J. & Broersma, L., 1991. "The relation between unemployment and interest rate : some international evidence," Serie Research Memoranda 0112, VU University Amsterdam, Faculty of Economics, Business Administration and Econometrics.
    14. Hendry, David F. & Clements, Michael P., 2003. "Economic forecasting: some lessons from recent research," Economic Modelling, Elsevier, vol. 20(2), pages 301-329, March.
    15. Adugna Lemi & Sisay Asefa, 2009. "Differential Impacts of Economic Volatility and Governance on Manufacturing and Non-Manufacturing Foreign Direct Investments: The Case of US Multinationals in Africa," Eastern Economic Journal, Palgrave Macmillan;Eastern Economic Association, vol. 35(3), pages 367-395.
    16. Zia-Ur- Rahman, 2019. "Influence of Excessive Expenditure of the Government in Perspective of Interest Rate and Money Circulation Which in Turn Affects the Growing Process in Pakistan," Asian Journal of Economics and Empirical Research, Asian Online Journal Publishing Group, vol. 6(2), pages 120-129.
    17. Goncalves, Silvia & Kilian, Lutz, 2004. "Bootstrapping autoregressions with conditional heteroskedasticity of unknown form," Journal of Econometrics, Elsevier, vol. 123(1), pages 89-120, November.
    18. Taoufik Bouezmarni & Mohamed Doukali & Abderrahim Taamouti, 2024. "Testing Granger non-causality in expectiles," Econometric Reviews, Taylor & Francis Journals, vol. 43(1), pages 30-51, January.
    19. Li, Yuming, 1998. "Expected stock returns, risk premiums and volatilities of economic factors1," Journal of Empirical Finance, Elsevier, vol. 5(2), pages 69-97, June.
    20. Evrim Imer-Ertunga, 2011. "Global financing conditions and sovereign debt yields of emerging market countries," Applied Financial Economics, Taylor & Francis Journals, vol. 21(4), pages 207-215.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:17:y:2024:i:13:p:3240-:d:1427145. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.