IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v17y2024i13p3102-d1420900.html
   My bibliography  Save this article

Mapping the Wholesale Day-Ahead Market Effects of the Gas Subsidy in the Iberian Exception

Author

Listed:
  • Carlos González-de Miguel

    (Departament d’Enginyeria Elèctrica, Universitat Politècnica de Catalunya, ETS d’Enginyeria Industrial de Barcelona, Av., Diagonal, 647, Building G, 08028 Barcelona, Spain
    These authors contributed equally to this work.)

  • Lucas van Wunnik

    (Departament d’Organització d’Empreses, Universitat Politècnica de Catalunya, ETS d’Enginyeria Industrial de Barcelona, Av., Diagonal, 647, Building H, 08028 Barcelona, Spain
    These authors contributed equally to this work.)

  • Andreas Sumper

    (Centre d’Innovació Tecnològica en Convertidors Estàtics i Accionaments (CITCEA-UPC), Departament d’Enginyeria Elèctrica, Universitat Politècnica de Catalunya, ETS d’Enginyeria Industrial de Barcelona, Av., Diagonal, 647, Building G, 08028 Barcelona, Spain)

Abstract

Amidst the global energy crisis in 2022, the Spanish and Portuguese governments introduced a subsidy to natural gas (“the Iberian exception”), attempting to lower the wholesale electricity market prices, with the understanding that gas-fired-combined cycle gas turbines (CCGTs) are price-setting technologies most of the time, directly or indirectly. The subsidy succeeded in lowering the market price but induced several other effects, such as (1) the increase in cleared energy in the Spanish market (mostly produced with gas), (2) the bias in the import/export cross-border position between Spain and France (Spain became a net exporter to France immediately), or (3) the consequent increase in congestion rents, which serve to lightly finance the subsidy, among other effects. This paper provides a framework for clustering the different effects based on the market participation phases: the subsidy, the market bidding, the market results, and surplus and rents. Moreover, this paper builds on the theoretical market models, with and without subsidies, and with and without cross-border exchanges. Based on the real market bids, the subsidies, and the generators’ data, we reconstruct the supply and demand curves and simulate the counterfactual market scenarios in order to illustrate and quantify the effects. We highlight the quantification of the theoretical effect of the transfer of rents, from non-fossil to fossil fuel producers, induced by the gas subsidy.

Suggested Citation

  • Carlos González-de Miguel & Lucas van Wunnik & Andreas Sumper, 2024. "Mapping the Wholesale Day-Ahead Market Effects of the Gas Subsidy in the Iberian Exception," Energies, MDPI, vol. 17(13), pages 1-21, June.
  • Handle: RePEc:gam:jeners:v:17:y:2024:i:13:p:3102-:d:1420900
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/17/13/3102/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/17/13/3102/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Bowei Guo and David Newbery, 2023. "The Cost of Carbon Leakage: Britain's Carbon Price Support and Cross-border Electricity Trade," The Energy Journal, International Association for Energy Economics, vol. 0(Number 1).
    2. Antimiani, Alessandro & Costantini, Valeria & Paglialunga, Elena, 2023. "Fossil fuels subsidy removal and the EU carbon neutrality policy," Energy Economics, Elsevier, vol. 119(C).
    3. Borenstein, Severin, 2000. "Understanding Competitive Pricing and Market Power in Wholesale Electricity Markets," The Electricity Journal, Elsevier, vol. 13(6), pages 49-57, July.
    4. Severin Borenstein & James B. Bushnell & Frank A. Wolak, 2002. "Measuring Market Inefficiencies in California's Restructured Wholesale Electricity Market," American Economic Review, American Economic Association, vol. 92(5), pages 1376-1405, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sirin, Selahattin Murat & Erten, Ibrahim, 2022. "Price spikes, temporary price caps, and welfare effects of regulatory interventions on wholesale electricity markets," Energy Policy, Elsevier, vol. 163(C).
    2. Dormady, Noah C., 2014. "Carbon auctions, energy markets & market power: An experimental analysis," Energy Economics, Elsevier, vol. 44(C), pages 468-482.
    3. Lynne Kiesling & Bart Wilson, 2007. "An experimental analysis of the effects of automated mitigation procedures on investment and prices in wholesale electricity markets," Journal of Regulatory Economics, Springer, vol. 31(3), pages 313-334, June.
    4. Moore, J. & Woo, C.K. & Horii, B. & Price, S. & Olson, A., 2010. "Estimating the option value of a non-firm electricity tariff," Energy, Elsevier, vol. 35(4), pages 1609-1614.
    5. Newbery, David M. & Greve, Thomas, 2017. "The strategic robustness of oligopoly electricity market models," Energy Economics, Elsevier, vol. 68(C), pages 124-132.
    6. Moritz Bohland & Sebastian Schwenen, 2020. "Technology Policy and Market Structure: Evidence from the Power Sector," Discussion Papers of DIW Berlin 1856, DIW Berlin, German Institute for Economic Research.
    7. Simshauser, Paul, 2024. "On static vs. dynamic line ratings in renewable energy zones," Energy Economics, Elsevier, vol. 129(C).
    8. Neuhoff, Karsten & Barquin, Julian & Boots, Maroeska G. & Ehrenmann, Andreas & Hobbs, Benjamin F. & Rijkers, Fieke A.M. & Vazquez, Miguel, 2005. "Network-constrained Cournot models of liberalized electricity markets: the devil is in the details," Energy Economics, Elsevier, vol. 27(3), pages 495-525, May.
    9. Csereklyei, Zsuzsanna & Qu, Songze & Ancev, Tihomir, 2019. "The effect of wind and solar power generation on wholesale electricity prices in Australia," Energy Policy, Elsevier, vol. 131(C), pages 358-369.
    10. Camelo, Sergio & Papavasiliou, Anthony & de Castro, Luciano & Riascos, Álvaro & Oren, Shmuel, 2018. "A structural model to evaluate the transition from self-commitment to centralized unit commitment," Energy Economics, Elsevier, vol. 75(C), pages 560-572.
    11. Karakatsani Nektaria V & Bunn Derek W., 2010. "Fundamental and Behavioural Drivers of Electricity Price Volatility," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 14(4), pages 1-42, September.
    12. Ian W.H. Parry, 2005. "Fiscal Interactions and the Costs of Controlling Pollution from Electricity," RAND Journal of Economics, The RAND Corporation, vol. 36(4), pages 849-869, Winter.
    13. David P. Brown & Andrew Eckert & Douglas Silveira, 2023. "Strategic interaction between wholesale and ancillary service markets," Competition and Regulation in Network Industries, , vol. 24(4), pages 174-198, December.
    14. Bunn, Derek W. & Chen, Dipeng, 2013. "The forward premium in electricity futures," Journal of Empirical Finance, Elsevier, vol. 23(C), pages 173-186.
    15. Andrew Sweeting, 2007. "Market Power In The England And Wales Wholesale Electricity Market 1995-2000," Economic Journal, Royal Economic Society, vol. 117(520), pages 654-685, April.
    16. Woo, C.K. & Zarnikau, J. & Moore, J. & Horowitz, I., 2011. "Wind generation and zonal-market price divergence: Evidence from Texas," Energy Policy, Elsevier, vol. 39(7), pages 3928-3938, July.
    17. Yan Li & Kailu Zhang & Bojiao Mu & Xinran Mo, 2024. "The long-term effects of transformation and upgrading policies on the market performance of China's coal-fire power generation industry," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 29(7), pages 1-38, October.
    18. David P. Brown & Andrew Eckert, 2018. "Analyzing the Impact of Electricity Market Structure Changes and Mergers: The Importance of Forward Commitments," Review of Industrial Organization, Springer;The Industrial Organization Society, vol. 52(1), pages 101-137, February.
    19. Dae‐Wook Kim & Christopher R. Knittel, 2006. "Biases In Static Oligopoly Models? Evidence From The California Electricity Market," Journal of Industrial Economics, Wiley Blackwell, vol. 54(4), pages 451-470, December.
    20. Fowlie, Meredith & Perloff, Jeffrey M., 2004. "The Effect of Pollution Permit Allocations on Firm-Level Emissions," CUDARE Working Papers 25116, University of California, Berkeley, Department of Agricultural and Resource Economics.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:17:y:2024:i:13:p:3102-:d:1420900. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.